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Dispersion Relations for a Plasma-Filled Helix-Loaded-Waveguide

M.A. Makowski, E.B. Hooper, B.W. Stallard

The propagation of waves on bounded, magnetized plasma columns arises in

connection with a variety of applications. To this end dispersion relations are de-

veloped for a variety of multi-region circularly symmetric configurations. These

include, a sheath helix in free space, a plasma column in free space, a plasma filled

conducting tube, a plasma filled sheath-helix in free space, a sheath helix within

a conducting cylinder, a plasma filled sheath-helix within a conducting cylinder,

and a plasma columu within a sheath-helix contained within a conducting cylin-

der. The latter configuration is of the most interest for whistler wave excitation

for plasma thruster applications, since it includes the effect of a vacuum region

separating the plasma column from the helical excitation structure.

I. Introduction

High-frequency electromagnetic waves on magnetized plasma columns are of interest

for a variety of applications. In the frequency range in which these waves interact primarily

with electrons, they are used to generate and heat plasmas and, in some cases, to take

advantage of distortions in the electron velocity distribution function.

Inductive excitation of waves can be accomplished using antennas outside the plasma

column. Helicon waves excited this way have been used to generate cool, dense plasmas. 1-4

These plasmas are of particular interest for plasma processing, 5,s generation of plasmas

for lasers, T and as a medium for wave acceleration of ions to high energy, s

Whistler waves propagate on the same branch of the plasma dispersion relation as

helicons but at a sufficiently high frequency that their characteristics are affected by the

cyclotron resonance. Excitation of these waves has usually been done by launching them

along the fieldlines from a microwave horn or similar launcher. °-13 The present authors

° are conducting an experiment, 14,15 to excite whistler waves on a column by inductive

excitation from the edge; energy is absorbed when the waves propagate down the magnetic

field to the resonance. The resulting expansion of the anisotropic, nonthermal plasma in

a magnetic nozzle can impart momentum to a structure through the magnetic field, thus
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generating thrust. The S_al is a high exhaust-velocity rocket of interest for near-earth and

interplanetary travel.

As part of this effort, we need to understand the propagation and excitation of these

waves on a uniform plasma column. In both the model and the experiment the plasma is

surrounded by an annular region with a constant dielectric constant inside a cylindrical

metallic waveguide. A helical antenna used to couple slow waves to the plasma modes

is modeled in the analysis. The plasma is represented in the cold, high frequency ap-

proximation and ion motion is neglected. The resulting formalism holds for electron-wave

excitation at all high frequencies.

We focus primarily on deriving the dispersion relation for waves in the full multi-region

cylindrical system. The dispersion relations developed below thus provide an understand-

ing of the bounded plasma/waveguide normal modes in more complicated geometries than

previously studied so that efficient coupling schemes can be developed. The results are

compared with previous calculations in the appropriate limits, providing a connection with

existing work. The details of the coupling in parameter regimes of interest to the exper-

iment, and of other features characteristic to applications, will be based on these results

but presented in a separate publication.

II. Field Equations for Regions of Uniform and Anisotropic Dielectrics

A. Plasma Model

In the dispersion relations to be developed below there will be one or more radially

separated regions. As shown in Fig. 1, each region is filled with either a uniform isotropic

dielectric or a uniformly magnetized plasma described by an anisotropic dielectric tensor.

Boundary conditions at the interfaces couple the waves in adjacent regions.

For the purpose of this paper we neglect the ion motion. However, we use this model

only when evaluating the dispersion relations and resulting field profiles. Other plasma

models consistent with the form of the dielectric tensor adopted below can also be substi-

tuted. The cold plasma dielectric tensor valid at electron cyclotron frequencies is

(0)= ex 0 (1) •
0 0 ez

is assumed in which
2

w2 e± = 1 w2 _ w2 (2ab)
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2 2
, eReL = eL + ex (2f)

where wc = eBz/me is the cyclotron frequency, wp = %/nee2/eorne is the plasma frequency,

w is the angular excitation frequency, me is the electron mass, e is the electron charge, Bz

is the magnitude of the axially directed magnetic field, e0 is permittivity of free space, and

ne is the electron density.

B. Field Equations for a region of Homogenous Isotropic Dielectric

MaxweU's equations for a region containing a homogenous isotropic dielctric can be

written in the form

V LEz = ikzE_. + ikoZo_ x HA (3a)

Va. x E j. = ikoZon_ (3b)

V, x (Z0H;)=-ikoe_E_#_ (3d)

where E and H are electric and magnetic field intensities respectively, k0 = w/c is the free

space wavenumber, c is the speed of light in vacuum, k: is the component of k parallel

to the z-axis, er is the relative dielectric constant for the region, Z0 = X/_/e0 is the

impedance of free space, and #0 is the pelmeability of free space.

The perpendicular components of the fields can be written in terms of the parallel

components as follows

i [k0_ x V.L(ZoHz)- k_V_.Ez] (4a)
E_ =-_-

i
ZoH± = -CS"[erko_x Vj.Ez + kzV_.(ZoHz)] (4b)

k_

in which k.L = %/k2oer- k_z is the perpendicular wavenumber. In simple situations, these

equations can be decoupled by assuming that either Ez or Hz vanish independently to form

transverse electric (TE or H) modes and transverse magnetic (TM or E) modes respectively.

Below, due to the presence of the plasma, the field components are coupled leading to the
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more general EH and HE modes. In cylindrical coordinates the general solution may be

written in matrix form as

( ) 00ko r O0

Z_Hr =,--_ o _k_Za 1 o z_o___ (5)k2* ko Or '
ZhH o "k-_Aa 0 0 1 -_

" k_ kor O0

where Zh = Zoko/kz. Define

Xem,j(P)= A (j)e.,Jr.(P)+ B_Ym(p), Xhm,j(P)=_h.,Jm(p)_l_..h._.m4(j) R(J)V" (p) (6ab)

, OXh,,,,j
, OXe,-,.,,j Xh,-r,,./(P)= (6cd)x,_,j(p) = Op ' op

where J._ and Ym are Bessel functions of the first and second kind respectively and j is a

region index. The individual fields components for the mth azimuthal mode are then

E(j) - inz[ , im ]a-_-_2u.iXhm,j(koz/x,r)+ _orXern,j(koy_ir) eimO, (Ta)

E_j)= i_, [ira , ]

,)d_e (74E(j) = Xh_,_(kou.j ' ,

in. [ ej irn ]ZAH (j) _ aj--@i n2z korXhm,j(koux, r ) + uxiX'em,j(kou.ir ) eira°, (7d)

ZhH(oJ) = in,, [ ej , im ]

ZhH(z j) --- Xem,j(kol/_jr)e imO, (7f)

-- a.i = erj- n z, ± = kov£io'j,

n.j = k. i/ko and j is a region index. We axe interested only in propagating modes and

implicitly assume k2 > 0.

The Bessel functions Jm and Ym have been used which are the appropriate choice for

aj > 0. Alternatively, the immaginary counterparts of these functions (Ira and K,n) need

to be substituted in the event aj < O.



C. Field Equations for a Magnetized Plasma

In a region containing a magnetized plasma the field equations are more complicated

' owing to the tensor dielectric. As above the perpendicular gradients of the field components

can be written in terms of the transverse components. The primary differences are in the

Hz and H, equations.

V.Ez = ikzE, + ikoZo£ x H,

V. x E. = ikoZoHz£
s(_- d)

V. (ZoHz) = ikzZoH. -iko£ x (e,. E,)

V, x (ZoH.) = -ikoezEz£

where

e, = . (9)
--6x 6.

In a manner analogousto thatoutlinedby Allis,Buchsbaum, and Bers16coupleddif-

ferentialequations for Ez and Hz may be obtained. The system of equations takes the

form

(v_ +_)E.= b(ZoH.) (_0a)

(V.2 + c)Z0g_ = dE,, (10b)

where
6z 6x

6, 6,

c -(k 2 k 2%e_ ), d--kzko exe" (11cd)= - o
Either E. or Hz can be eliminated to yield identical fourth order equations which may be

written as

(_ +v_)(v_+v_) Hz

where p_ and p_ are solutions to the infinite region Appleton-Hartree dispersion relation

¢ - (_+_)v_+ (._- bd)=0. (_3)

We then have
2 1 [ ]

[(a+ c)+ x/(_- _)2+ 4bali. (14)Pl,2
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Note that p_ mad p_ are functions of kz and effectively constitute a pair of perpendicular

wavenumbers for the plasma region.

After some algebra the transverse field components can be written in a form analogous

to that of the isotropic solution. Here we have

10EL
Ee ----iAnz --ex s --s --ex k0r 00 (15)

Zh Hr ex _ s ex Z_._h
ko Or

ZhHo -t ex -ex s zh
_or oe

2 t=_-e_ andA 1/(s 2where s = n z -- e±, n, ' = -- ex)"

The normal procedure at this point would be to write the general forms for Ez and

Hz and derive the expressions for the transverse field components. However, because of

Eqns. (10ab) Ez and Hz axe not independent of one another. In cylindrical coordinates

the general solution for Ez may be taken as

Ez = [ApmJm(uRlp) + BpmJm(vRlp)] e ira° (16a)

where u = pl/ko, v = p2/ko, R1 = k0rl, p = r/rl is the normalized radius, and rl is the

plasma radius for our study. The plasma, when present, will always be confined to the

innermost region (0 < r < rl). Substitution of Eqn. (16a) into Eqn. (10a) then gives for

Hz

ZhH = +ZBmem(vR p)],mO (16b)

where c_= (a - p_)/bnz = d/n_(c - p_) and _ = (a - p_)/bn_ = d/n_(c - p_). Define

iAn_

Xpm,t(P) "- R1 [A, me_lJm(URlp) q- Bpme_2Jm(vRlp)], (17a)

Xpm,t(P)' = iAnzR1[ApmetluJ_(uRlp) + Bpmet2vJ_(vRlp)] (17b)

where _ is an index ranging from 1 to 3 and where

ell = s - OLex, e12 = s - flex, (lSab)

e2x = ex + as, e22 = e_ + fls, (18cd)

e31 -" t + Ceex, e32 = t + flex. (18ef)
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The transverse fields may then be compactly written as

= Rix,m,i(p)+ -'_X,m,2(p)ei'_°, (19a)

[, ]. Eo= -R_x.,,,,_(p)+ --_-x.,,,,_(o)_,_o, (195)

[, ]Z,H.= R_x.,,,,_(p)+ --x,,m,_(p)_.,o, (19_)
p

[ , ,m ]Z,Ho= -n_x_m,_(p)+--x..,,_(p)_,.,o. (_Sd)
p

III. Boundary Conditions

A. Helix Model

Helix loaded waveguides will be considered below. The sheath helix approximation 17

is used in the derivation of the dispersion relation involving helices. In this approximation

the helix is treated as an anisotropic, infinitely thin cylindrical conductor with infinite

conductivity in the direction parallel to a helix of pitch angle, ¢, and zero conductivity in

the direction perpendicular to the helix angle. The sheath helix boundary conditions are

E(_I) = E(2)= 0, E_)= E_ ) (20ab)

where v is the direction parallel to the helix, w is the direction perpendicular to the

helix and the superscript refers to field values on either side of the helix. In cylindrical

coordinates (r, 0, z), the helix unit vectors are

=__o_¢ + __i_¢ (2_)

= -0 sin ¢ + _,cos ¢. (215)

Equations (20ab) are equivalent to the following conditions which are algebraically easier

to apply 18

, E (1) = E (2) = 0, E (1) = E (2). (22ab)

The sheath helix modelcontains the essential physics of the helix without adding undo

complexity to the dispersion relation. The primary feature neglected by the sheath helix

model is the coupling of azimuthal modes to one another iv. The azimuthal mode coupling
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results from the boundary condition at a discrete helix and requires the use all normal

modes to match the fields at the helix interface. 19'_°

B. Boundary Conditions at a Perfect Conductor

The standard boundary conditions prevail at the interface of a dielectric region and a
O'

perfect conductor, namely the vanishing of Etan and Hnor which in cylindrical coordinates

become

Eo(ac) - O, Ez(ac) - O, (23ab)

H,.(ao)=o (23 )

where ae is the radius of the conductor.

C. Boundary Conditions at a Dielectric Interface

The standard boundary conditions apply at the interface between two regions of dif-

fering dielectric constants. These are the continuity of Etan and Hta, across the interface.

In cylindrical coordinates these conditions become

E_l)(ad)- E_2)(ad), EO)(ad) -- E(2)(ad) (24ab)

H(1)(ad)-- H_2)(ad), H(1)(ad) = H(2)(ad) (24cd)

where ad is the radius of the dielectric interface.

D. Boundary Condition at Infinity

In order to obtain physical solutions in unbounded regions, the solutions must nec-

essarily vanish at infinity and at a rate such that the integrated power in the mode is

finite. The Bessel function satisfying these conditions is Kin. Thus bounded solutions in

an infinite region require both that aoo < 0 and that "_h,na(_)----A_ ) = 0 in Eqns. (7a-f)

where the oo sub- and super-scripts refer to the outermost region.

IV. Derivation of Dispersion Relations

We now proceed to derive the dispersion relations for a variety of arrangements of

generally increasing complexity. Several of the dispersion relations do not contain plasma

effects but are included to verify plasma dispersion relations. The derivations also include
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expressions for the field amplitude coefficients, Apm Bpm, _(1) A(1) B(1)' _hm, era, em_ ..., SO that

field profiles may be obtained for specific solutions to dispersion relations.

A. Single Region Problem (Fig. 1A)

" A particular problem of interest is that ofa plasma filled waveguide. The boundary

conditions of section III.B will be applied in turn to eliminate the amplitude coefficients

Apm and Bvm. First, the condition on Ez yields

J,,(uR1) (25)
Bv'n - -Av'n J,n(vR1) "

The condition on Ee, Eqn. (23a) gives

0=
(26)

+ im [Apmezl J,.,(uR_) + Bp,-,e32J,n(vR1)].

Substitution of Eqn. (25) into (26) yields the dispersion relation, which after some simpli-

fication can be written as

0 - Do = e_luR1J_(uR1)J,.,(vR1) - e22vR1J_(vR1)J,.,(uR1)
(27)

-  m(Z-

Aside from notational differences, this is the dispersion relation first arrived at by Allis,

Buchsbaum, and Bets 16. Standard circular waveguide modes are recovered in the limit of

no plasma (wp --, 0).

B. Two Region Dispersion Relations

We consider a two region problem (Fig. 1 ), both with and without a sheath helix

separating an outer region, rl < r < r2, containing an isotropic dielectric from an inner

region, 0 < r < rl, containing either a magnetized plasma or a second isotropic dielectric.

To assess the effects of a conducting wall the dispersion relations are also obtained in the

limit r2 --, oo.t

For the two region case in which the innermost region is plasma filled, the superscript

. on the outer region amplitude coefficients will be dropped.The regions may be distinguished

in these cases by p, e, or h appearing in the subscript.



1. Sheath Helix in a Conducting Cyliuder (Fig. 1B)

The conducting cylinder located at r - r2 imposes the boundary conditions E_2)(r2)

= 0 and E_2)(r2) = 0 which respectively yield

2)_ (2s) •
hm -- --"-'-hm Km(va._l:t2 )

and

B(2) = _A(2)I_(v.:R2) (29)
em em K_ (va.2.R2 ) .

The sheath helix condition, E(1)(ra) = Ev(2)(rx) = 0, where r = rl is the radius of the

helix gives upon elimination of B_2m) and ,(2) respectivelyJ'_hm

A0 ) a(1) ial %., _xx (30)

and

A(2)em= --hma(2)ia2VX'nzV2a Km(v_,R2) "_ (31)

where

mnz (32ab)
_11 = tan ¢ al v_tRl 'mnz _2x = tail ¢ a2v2 2R1

T = Im(v_,Ra)gm(vx,R2 ) - I_(vx,R2)Zm(v±,R1 ), (33a)

T" I'm(vx,R1)K_(v_,R2) ' g'= ' - I_(va.,R2 ) ,_(va.,.Ra ). (33b)

Next the sheath helix condition on the continuity of E, gives upon elimination of _(2)"'hm

A(2) a(a) Im(vxtRx)Km(vx,a2) (34)hm "-- _-*hm T "

The final sheath helix boundary condition on the continuity of Hv upon elimination of

a(2) and a(x) namelya(1) A(2) _(2) and _(2) also yields a relation between "hm "_hrn,_em _ _em_ _.,em _"hm

A(2) T"Km(v._,.R2) ellam(V.LtRa) - v2 _121/2m(vj.tR1)nm = _2u_, _1 (35)
A(1) _lVx, I_(v_tR1 ) e2T"T,- v_,q_lTThhm

where

Te = I'(va.,R1)Km(v.,R2)- f,,.,(v,.,R2)g_m(v.,R1), (36a) "

Th = I_(v_2R1)Kk(v_,R2)- Ik(vx,R2)K_(v_,R,), (36b)
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Equating expressions (34) and (35) yields the dispersion relation for the sheath helix in a

waveguide

" I..,(v.,R,)I_(v._R1) a2v.2 e,I_(u.,R,)- v_, '_2,I_(_._.R,)
= . (37)

TT" glv_ e2T"T_ - v_!2_ITTh

2. Sheath Helix in an Infinite Medium (Fig. 1C)

The dispersion relation for the sheath helix in an infinite medium can be obtained

from Eqn. (3{3) in the limit R2 --_ oo. The result is

_x_,(,,,.,R_)- ,,;, . (38)
a2vx, gm(v_,R1)g_, (vx, R1) = e2g_(v_.,R1) _.v_, _l Z_ (vx,R1 )

The corresponding field amplitude coefllcients in this case are

A(2) _(2) = 0, (39ab)hrn -- 2"J'¢m

l,.,.,(v_.,R,) (39c)
A(I) _(1) ialvj.t_lli_(vj.tR1 )_'x e m -- _ _ h rrt r_ z

Km(vj.,R1) (39d)
B(2m)= .(2)ia2va., _21 g_(v_.,R1)

B_2r_ ) '_ (1) /m (I'P'I"'R1) (39e)
= -'-'t`mKin(v±, R1)"

In the case that el = e2 = 1, which implies v;l = v_ = v;, @11 = _21, and al = a2 =

-1, we recover, aside from notational changes, the dispersion relation derived by Pierce 17,21

( )'t TT-t,7/,z
I_(vj.R,)K_m(vJ.R1) 2 tan¢ + _ (40)
x,,,(_,_,a,)g,,, (,,.R,) = -v. ,.,,_R,

3. Plasma Column within a Perfectly Conducting Cylinder (Fig. 1D)

For this situation, the plasma is assumed to be confined to the region 0 _< r _<rl

while for rl < r < r2 the medium is assumed to be isotropic with dielectric constant e2.

Application of boundary conditions Eqn. (23a) and Eqn. (23b) respectively yields

' I,,,(v.,R2) (4i)
B t ,̀,_ = -At,,,, K,,.,(vj._R 2) '

B(,,., =-A,m I_(vx,R2) (42)
g'(._,a_)"
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q.

From boundary condition Eqn. (24c) and Eqn. (24d) we have

K"(v±'R1)[Ap,,Jm(uR1) + BpmJm(vRa)], (43)
Ahm = T

Ae,, = K" (vJ"R1) [ApmaJm(uR_ ) + BpmflJ,r,(vR1)]. (44)
Th o

From boundary condition Eqn. (24a) we find after eliminating Ahm, Bh,.,, Aem, and Bern

[ =1F_(_)+_
Bpm = -Apm _,,v., _ "+"lath J J,r,(uR1) (45)

Gl(v)+ _ [ " .R'r"l.,_, _---_+Z_.T,j J._(vR1)

where

F_(_)= iA_,R1 [e21uR1J'(uR1) - imellJm(uR1)] , (46a)

iAnz

Gl(v) = R-_ [e22vR1J'(vR1) - ime_2Jm(vR_)] . (46b)

Application of the final boundary condition, Eqn. (24b), and elimination of Ahm, Bhm,

A,,.,, and Bern yields another equation containing only Apm and Bpm, namely

Bpm =-Apm a, va, _-i'_2n, _ T (47)

a2_a2L_±2at

where

i/',nz[e3_uR_J'(uR_)- _me_Jm(u.R1)], (48a)F_(_)= R--S
iAnz

G2(v)= R1 [e32vR1J'(vR1)-ime22J,.,(vR1)]. (4Sb)

Equations (45) and (47) constitute two simultaneous linear equations in two the two un-

knowns, Apm and Bpm. The dispersion relation is obtained by their elimination which

results in

m . T" ]F_(_)+--a_ +

[ =1G,(v)+ TM '_ i_ J,_(vR_)o_ _+ ThJ
(49)

F2(_,)+_ [ "_ i_l J._(_R_)

e]G2(v) + n. [_ _ i___.2 Jm(v.R1)o2v±2I.v., Rt n,

12



4. Plasma Column in an Infinite Medium (Fig. 1E)

To obtain the dispersion relation for the plasma column in an infinite medium take the

limit of _2 "--+oo. In this case, Te/T -,, T"/Th _ K'(v±2R1)/Km(v.2R1 ). The resulting

dispersion relation is
O

a2V.L2 ._ + ZO_Krn(u±2Rt )
Jrn(UR1)

J

(50)
_2_2 _.,R_ z_, K,,(_.2R_)J

G2(v) + n. [ rn_ _ i___K',,,(v.,Rt)],,vj., [va.,Rt n.z Krn(v±_Rt) J,_(vR1)

The field amplitude coefficients may be found from

Ahm = 0 -- Aem (5lab)

v, ux' _ + ia Km(ua.2Rt) (51c)

e_va. 2 v_2Rt -_" Km(vj._Rt)

Bhm = Sm(uR1) + J_(vRx)B,m/A,m (51d)
Apra Km(va.,Ri ) '

Be__.___m= aJm(uR1) + j3Jm(vRx)B,m/Apm (51e)
Apm K,,(v_.2R1 ) "

.5. Plasma Filled Helix in a Conducting Cylinder (Fig. 1F)

As above, the plasma is assumed to be confined to the region 0 < r _< rl while for

rl < r < r2 the medium is assumed to be isotropic with dielectric constant e2. Application

of boundary conditions Eqn. (23a) and Eqn. (23b) lead to the same result as above, Eqns.

(41) and (42).

Setting E (x) = 0 yields

Fx(u) + Jm(uR_)tan¢ (52)= + tan¢
t

while setting E (_) - 0 gives upon elimination of B_m and Bhm

A_m = --iAhm Cr2v±' T Y'm(v.,R2) _2a. (53)

13



Equating the z-component of the electric field on either side of the sheath helix yields

upon elimination of Bpm and Bhm

Jm(uR1)Gl(v) Jm(vR1)Fl (u)
Ahm = Ap_ Ym(v_'R1) - (54)T al(_)+ J_(_R1)tan¢ '

o

This can be simplified by noting that

iAnzDo (55)

where Do is defined in Eqn. (27) and is the dispersion relation for the plasma filled cylinder.

!tence

Ahm = -iApra Anz Ym(Uj.,R2) Do (56)

Finally, the continuity of Hv across the sheath helix, after elimination of Bp,n, Bern, and

Arm, results in

a2v.,n,T"Ym(v_,R2) ¢1 (57)
Ahm -- -iApm GI(V) -l- Jm(Vnl)tan¢ e2T"T_ - u2, @21TTh"

where

(ss)
-[c2(_) +_j_(_R_)t_ ¢][FI(_)+ J_(_R_)t_¢].

Combining the last two results then gives the dispersion relation

ADo a2v_2TT"
= . (59)

RI_I e2T"Te - v22_21TTh

Note this form of the dispersion relation isolates plasma terms on left hand side of the

equation from the helix terms appearing on the right hand side.

6. Plasma Filled Helix in an Infinite Medium (Fig. I G)

In this case the field amplitude coefficients are given by

Aem = 0 = Ahm. (60ab)

The relation between Ap,, and Bp,n is unchanged and given by Eqn. (52). We have for

the remaining coefficients

a2 VJ'2 _I/21 , (61)
B_m = -iB,_ n---_ K'_(u.,R1)

14



An_Do I

Bhm = -iApm R1Km (vx2R1 ) an(v) + J,.,(vR1) tan ¢' (62)

The resulting dispersion relation is
4

S2 /2ADo [e2g_(_,R1) __2vj.2 W21_m'T'2rp2 (v±,nl)] -- a2vx,.R1K,r,(vj.,R1)K_(v.L,R1)O1. (63)

o

C. Three Region Problem (Fig. 1H)

The three region problem is the most interesting physically, as it represents the most

realistic geometry; one in which a vacuum or near vacuum region separates the helix from

both the wall and the plasma. This dispersion relation determines how close the plasma

must be to the helix in order to obtain good coupling to the plasma wave.

The derivation of the dispersion relation proceeds as above but with much greater

complexity due to the added region. Many of the details will be skipped. The dispersion

relation which results is a fully populated 4x4 determinant. Since there is relatively little

simplication to be gained in the limit rz --* c_, this case will not be considered.

The boundary conditions at the wall yield, analogous to Eqns. (41) and (42)

(64)
h,n = -----hmK,_(vj.sR3 )

and

B_2 = _A (3) I'(v-sR3)

where R3 - kor3, r3 = radius of the solid conductor.

The helix boundary conditions for the electric field at r = r2, the radius of the helix,

gives

A(3) ;_(3) a3_xs T23 K'(vxsR3)_32 (66)
em -- --"'"hm nz T_' 3 Km(V±,.R3)

G2v±=T23_22 4(3) = A(2)T, R(2)_ ' C, R2) (67)-i

T23 A(3) --- t(2) Im(b'±,R2) ._. B (2) re" (b'.,R2) (68)
Km(vj.sRz)'_-hm "-_'hm hm-"m

t
where

rnn z rnn z (69ab)
• _I/22= tan¢ 0.2v22R2 , _1/32 = tan¢ a3y28R2 ,

T23 = Im(v±_R2)Km(v_._R3)- Im(v±_Rz)K,-,(v_.3R2), (70a)
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T_, _'(_..R,)K'(_..R,) X'( '-- - v,,Rz)Km(v_.,R2). (70b)

Next the helix boundary condition for the magnetic field at r = r2, the radius of the helix,

yields

r.(2) , (2) , R2)lj4(3) iDH = ie2 [AhmIm(v.,R2 ) + Bh,nKm(u±, •
T"K (._R_) _,_, (71)"J'hm O.3 V L3n z 23 m

where the DH is the "helix dispersion relation" given by

,y,I ,y, tt 2 2
DH = _3"23h'23 -- vj-__z2T23T_3 e (72)

in which

T_ah -- I_(vj..R2)K,,(v_,R3)- I,,,(vx.R3)g_(vx_R2), (73a)

T_3 e = I,,(_,.LsRz)K_(vj.sRz ) - I_(vj.sR3)K,,,(L,_sR2 ). (73b)

Anticipating that linear combinations of the form

(2)
4(2) I rv Rj)+ BhmKm(vx2Rj) (74)"_'hm m\ .L2

and its derivative with j = 1, 2 will frequently arise, we digress now to derive some relations

which will expedite the remaining algebra. To this end define

= 4(2) r rv Ri) + ,(2) g,,(vx,Rj) ' (75a)

= ,t(2) ' B(h_K_(_,_,Ri), (75b)B(_) .._x:.(_,R_) +

e3

B_ ) = A(_2r._(vx,Rj) + B(2_K_(v.,Rj). (75d)

The .A's and B's subscripted with j = 2 may be expressed in terms of those subscripted

j = 1 and conversely. The result is

[_r, _(2) _, _(2)1
['c' ,t(2) ._, _(2)] B(2_) -v_._R2 L--t2.,_h2 ---_2h,_h2 ], (76ab)A(_) = -_.,R2 L-_2_.-._2- -_2,_2j, =

[,y,I A(2) ] [,y, II ,4(2) t r2(2)1A_2)=-_,R2 L-_2_2 -r_2Z_ )_, Z_])= -v_,_ L-_2 -_=_2 j, (76cd)

rv, _ _z(2)] [ .
16



---- 2h_el -- 12 el J , /'_e2 "---vx2R1 T12 - ,

where

T12 = Im(v.2R1)gm(u.2R2 ) -- I,n(u.2R2)Km(v.2R1 ), (77a)

• T_2h = I_m(u.,R1)Km(uj.,R2)- Sm(u.,R2)g_(u.:R1), (77b)

X_2_ = Sm(v.,R,)K_(v.,n2)- l_(v.,a2)g,.,,(v.,R1). (77c)

T_'2 '-- - Z'm(vj.,R2)g_,,(vx,R1), (77d)I'm(vx,R1)g' (u.,R2 ) '

and where use of the Wronskian

1
W{Im(z),K,n(z)} = I,,(z)K_(z) - Km(z)I_(z) = -- (78)

Z

and the identity
1

' ' " (79)
Tx2_T12 h- T12T12 = v_2R1R 2

have been made. With the notation introduced above the previous results of Eqns. (66),

(67), and (68) can be rewritten as

_.(h_)_(_) T2_ (s0)= -h., K,,,(v._/h),

• o-2v±:T23_I/22 A(3) __i_r:/)±: _22.A(2 ) (81)

B(_) o'ev.:n: { iDH }
: -- 122¢-te2 •

Continuing, the continuity of E0 at the plasma-vacuum boundary gives

_t(_)=o (83)Ap..,Fl(u) + Bp,..G,(v) + wlhA_ ) + w,e e2

where

Wlh --" a2Y.iR1 -- e20"3v.,T23T_3 n: '

inz'R2 [ma2ux'nzT12ff222 "]r wle = a2v.=R1 e2 -v_=RIT12 . (84b)

Similarly, continuity of Ez at the plasma-vacuum interface gives
I

A, + + + )=o (85)

17



" in which

[ ' a_'2T12DH ] (86a)W2h -- U±,R2 TI2 e -- e2orzvLaT2zT_ 3 ,

W2e --_--$/Ix,.R2[Cr2ZJ_2rZzT12 xI122].e2 (86b)
@

The last two boundary conditions, those on the continuity of Ho and Hz, respectively yield

w ,(2) 0, (87)+ + )+ =

. A(2) W " _(2)aAp,,.,J,.,.,(uR1) + _BpmJm(?J.R1) "_"W4h,,,"th2 Jr" 4e_e2 "- 0 (88)

where

inzR2 [e2T_' 2 °'2Y±'"_'ll2hDH--rr_°'2T12'_I/22] (89a)W3h = 0"2 n2z 0"3 .snzT23T23 nzR1V 2 tt

0"2Vx_ n z .R1

Wah =/]j.,.R2 iO'2u±'T12_22 , (90a)
nz

t
w4e = v±,R2TI2e. (90b)

Equations (83), (85), (87) and (88) yield the dispersion relation in the form of a 4x4

determinant
F (u) G (v)

Jrn(uR1) Jrn(v.al) W2h w2_ = 0. (91)

Once a solution to Eqn. (91) has been found the ratio of the amplitude coefficients,

Bpm/Apm, .Ai_)/Ap,,,, and "'_e2A(2)/zi/"_'Pm may be solved for using any three of the equations

forming the determinant, A4. From Eqns. (82) and (81) I3(_)lAP.., and _'e2r_(2)/'_Pm/amay

be found. From the _4's and B's for j = 2, the ,4's and B's for j = 1 may be derived

(2)/Ap,n,from Eqns. (76). Also derivable from either subscripted set of .A's and B's are Ahrn.

B(2) IA _, A(_/A.,,,.,.,, and B(2)/A through the use Eqns. (75). Finally, ..h_/._.pm,hml P eml pm A (3) /A

B(3)/_ ,_(3)/_ and n(z)/_h,n/"p_,,-*_ml,--pm, ,.,em/,lpmcan be foundfrom Eqns. (71),(64),(66)and (65)

thuscompletingthesolutionofallamplitudecoefficients.
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Figure 1. Configuration of the plasma, helix, and waveguide
used in the derivation of the dispersion relations. In the figure
letters a, b, c replace ri used in the text for region radii.
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