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ABSTRACT 

The multiple scattering theory (MST)  method of Korringa, and of Kohn and-Rostoker for 
determining the  electronic structure of ~ 0 b d 6 ,  origindy dcveloped in connection with potelitids 
bounded by non-overlapping spheres (muffin-tin ( M T )  potentials), is generalized to the case of 
space-filling potential cells of arbitrary shape through the use of a variational formalism. This 
generalized version of MST retains the separability of structure and potential characteristic of 
the application of MST to MT potentials. However, in contrast to the M T  case, different forms of 
MST exhibit different convergence rates for the energy and the wave function. Numerical results 
are presented which illustrate the differing convergence rates of the variational and nonvariatonal 
forms of MST for space-filUng potentials. 

INTRO D LJ C T m  N 

The method proposed by Korringa(l1 and by Kohn and Rostoker[2] ( K K R )  provides a con- 
venient way of cdculating the electronic structure of an assembly of atoms. The method was 
originally fcxmulated for periodic systems and for use with potentids of muffin-tin (MT) form, 
i.e., potentials that  are non-zero only within a sphere inscribed inside the Wigner-Seitz cell and 
are also spherically symrnetri::, Its numerical appbcations have dso been confined dinost ex- 
clufjively to such potentials, However, in spite of the fact that the MT approximation is quite 
appropriate in  many cases, e.g, reasonably dose packed crystalline metds[3], it cannot properly 
describe a number of physical systems, e g . ,  semiconductors and surfac,e and interface regions. 
The atomic (cell) potentials in such systems often deviate drastically from their spherical average, 
and the contributions from regions outside the inscribed spheres are often non-neglible. Thus, a 
proper treatment of such systems within the K K R  method requires the extension of the method 
to  non.MT, space- filling cells. 

Much work[4-25] has been devoted to the question of the applicability of the KKR method to 
space-filling potential cells. In this work, a great ded  of attention has. b%iipaid to the issue of 
'near field corrections", a term used to indicate that MST cannot be applied without modification 
to  potx t ia l s  with shapes and positions such that their circumscribing spheres overlap. This, in 
turn, would imply that the separability of struclure and potential, so convenient for computations 
in the case of MT potentials, would be lost with the result that the application of MST to space- 
filling Cell6 would blz;ome a much more arduous undertaking, both conceptually and in practical 
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terms. 
In this paper we present a derivation of the secular equation of multiple scattering theory for 

non-MT potentials within a variational formalism. The existence of a variational form of MS'I' 
has a number of important impljcations. First, it is of practicd importance, in, for example, the 

Second, it is of formal importance because it provides a complete justification of the validity of 
MST in the  c a e  of space-filling cells, In addition, the formdism of this paper shows clearly that 
the problems encountered in generalizing M S T  to space-filling potentials are primarily geometrical 

dctermination of the total energy in cAarge-se~-consistent calculations of the electronic structure, 
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in nature involving the convergcnce of the arigular mometitum expansion of the free particle 
propagator. 
' This derivation also showe explicitly that MST retains the desirable seperability of potential 
and structure even in the c a e  of non-MT, space-filling cells, However, in contrast to the case 
of MT potentials, the variational nature of the eigenvalues of the secular equation determining 
the band structure is greatly affected by the particular form in which that equation is written. 
This feature is borne out by numerical calculationo whose result8 are presented in a later section. 
This feature is new in the gense that in the case of muffin-tin MST all of the various forms of 
the muffin-tin MST secular equation yield energies that are variational with respect to the wave 
function. 

THE VARIATIONAL PRINCIPLE OF KOWW AND ROSTOKER 

'P'he time independent SchrMinger equation, 

may, for bound states, be written in the integral form 

+(r)  = 1 dr'Go(r, r')V(r')+(r'), (2) 

where Go(r,r') is the Green function for the JIelrnhoItz equation and is the solution of the 
equation, 

(02 + E)Go(r,r')  =-. b(r - r'). (3)  
Kohn and  Rostok~r[2] showed that Eq. (2) is equivalent to the variational principle SA[@] = 0 

where the functionaJ A is defined by the expression 

This variational principle can be used to obtain a secular equation determining the wave function. 
Upon using a trial function of the form, 

with aj a complex coeficient and 4j an element of some basis set, and subfitituting into Eq. (4) 
we obtain, 

where 

is a Hermitian matrix. The application of the variational principle to Eq. ( 6 ) ,  

6A - =: 0 i = 1,2, ..., n, 
6ai 

yields the set of homogeneous h e w  equations, 
n 

jx= 1 

I ,  



which h a s  non-trivial solutions only if its determinant vanishes, This reqiiircment leads to the 
WC u 1 ar q u a t  io 11, 

det IAij(E)I = 0, ( 10) 
which determines the energy. The energy dependence of A comes from the energy dependence 
of the Green function and possibly from the energy dependence of the basis functions. Since the 
energy is determined from a secular equation based on a variational principle the error in the 
energy will be of second order with respect to the error in the wave function, 

There are two important differences between the Mohn-Rostoker variational principle and the 
more common variational procedure that is usually associated with the names of Rayleigh[26] 
and Ritz[27], &2[$] = 0, where 

Firstly, the Kohn-Rostoker secular Eq, (10) is not linear in the energy even if  the basis functions 
$i are energy independent. Thus, aince the convenience of a secular equation that is linear in 
energy is lost from the beginning there is no further loss in convenience if the basis functions are 
chosen to be energy dependent. The second important difference is that since the Kohn-Rostoker 
variational functional, A[$], only involves integral operators rather than the differentid operator 
that occurs in the Rayleigh-Ritz procedure, it remains vdid in the presence of discontinuities in 
the basis functions which would lead to singulwites in E¶. (11). This makes it possible to choose 
basis functions that are piecewise combinations of locally exact solutions to the Schrijdinger 
equation. 

Thtns, although Kohn and Rostoker could have chosen almost any set of functions, 4j, in 
which to expand their trial wave function, they chose functions which took best advantage of 
their variational principle. They divided space into cells, approximated the potential within 
each cell by a muffin-tin potential, and used as basis functions the exact local solutions to the 
Schrodinger equation (for the muffin- tin potential) within each cell. The use of locally exact 
solutions has the important benefit of allowing the volume integrals within each cell that occur 
in Eq. (4)  to be reduced by means of Green's theorem to surface integrals which turn out to be 
trivid to  evaluate for muffin-tin potentials. In the following we shall extend their derivation to 
the case of non-overlapping potentials of'generd shape. 

VARIATIONAL DERIVATION OF MST FOR SPACE-FILLING CELLS 

For convenience of ex.position we treat the case where the total potential V(r) is confined to a 
finite region of space. Our final formulae will, however, be applicable to infinite systems as well. 
We divide this region into non-overlapping, but otherwise arbitrarily shaped cells, denoting by 
0, the volume occupied by cell n, and by un(r) the potential within that cell. Thus A will be 
written as A = C,,A" where 

An = l* +*( r )%l ( r )W (W 
and where B(r) is given by the expression 

B(r) = $(p)  - drt~~(r, ~ ~ ) v ( ~ ~ ) + ( ~ ~ ) .  (13) 

and 
+(r) = 1 &'(VI2 + E)GO(r, r')+(r') 

B(r )  = l, dS' 6' [V'Go(r, r') - Go(r, r')V']$(r'). 

(15) 

together with Green's theorem, Eq. (13) can be converted to a surface integral, 

( 16) 



Si m ilnrly, the identities, 

and 

can be used with Green's theorem to write A" u 

d,S i, [V**( r) - $*( r )V]B(  r) 
An = J, 

The surface S' may be any surface that encloses the region where V(r) # 0, and the surface S, 
is the surface enclosing R,, that region of space where un(r) is nonzero (Fig. 1). 

In order to  derive a useful formula for An,  we must separate the integrals in Eq. (20). This 
can be done by using the Green function expansion, 

where rn = r - ]Rn is centered about a point in cell n.  In order for this expansion to be convergent, 
it is only necessary that all points on the surface S' be further from the expansion center in cell 
n than a l l  points on the surface, S,, of cell n (Fig.1). The choice of these surfaces provides one 
way of obtaining a valid, convergent expansion of Go in terms of intracell vectors in adjacent cells 
that  can be integrated independently over the cell surfaces. Thus An is given by 

where the sum over 1;'' could be moved outside the integrals because it is convergent for every 
value of the integrand. 

At this stage it is convenient to employ local sets sf basis fiinctions to  expand our trial wave 
function in the form, 

nL 

where O,(r) is unity for r inside cell n and vanishes otherwise, and where @ ( E ,  r,) is a solution 
of the Schradinger equation for energy E ,  corresponding to the potential in cell n. The functions 
Q ~ L  have the form 

where 

and 

and where [f,g] denotes the Wronskian of the two functions f and g. 
Using these local solutions, the integral over S, becomes 



Now, consider the surface integral over S', 

1st Ll dS'iz' [ V ' H ~ l l ( r ' n )  - H ~ ~ ~ ( r t n ) V ' I $ ( ~ ' ) .  

This integral can be written as a sum of surface integrals over the surfaces of each of the cells in 
the system. Using thc expansion in terms of local basis functions, Eg. (24),  we have 

At first glance, it might appear that the surface of integration can be eifher S' or any surface 
bounding cell n', such as the surface S,,, of the cell itself because the functions 4; are local 
functions that satisfy the Schrodinger equation for the cell potential un( r)  . A conceivable reason 
for this is that, by the uw of Green's theorem, the integrals in Eq. (29) can be written as volume 
integrals 

where 0,) is the volume contained within surface S,:. Clearly this integral is independent of 
the volume of integration as long as it includes al l  of the voliime in which z),) is nonvanishing. 
However, the integral over the surface, S', of the large sphere always includes the singularity of 
the Hankel function, while the integral over the siirface of a cell may not. This is true when the 
Hankel function is expanded about the center of am adjacent cell, Even though the contribution 
of this singularity is non vanishing, it is still true that the rcplncexnent of one surface integral 
by the other does not affect the expansion for A .  That this is indeed the case is shown in the 
appendix . 

Thus A can be written in the form, 

where 

and hnere the integral over S' has been replaced with the integral over the surface,S,I, of the 
cell Q n l ,  Note that it is now necessary that the surface integrals be performed before the sum 
over L". Otherwise the sum would diverge whenever r i  is smaller than r,, a situation that will 
occur for general potentials, but which can be avoided for muffin-tin potentials. The reason for 
the lack of commutivity of the sums arid integrals in the last equation is the fact that one may 
replace complete sum6 or integrds by complete sums or integrals of the same d u e ,  but one may 
not necessarily be allowed t o  rearrange the individual terms of the sums. 

The generalized MKR equations are obtained by minimizing Eq. (31) with respect to the 
coefficients A& with the result 

X g , ( E ) A $  = 0. (33) 
n' L' 

The eigenvalues of Eq. (1) are found among those values of E for which the determinant of the 
Hermitian matrix A t $  vanishes. This matrix is the product af the generalized sine and cosine 
matrices, S z L I ,  and CES, defined by the expressions 

and 

(34 1 

(35) 
J S,r 



SO that 

with  a tilde denoting the transpose of a matrix. Note that in CZ$ the integral extends over the 
surface of cell On1 but that the Hankel function is expanded about the center of cell R,. We see 
that CzL,  = CEzI+ 

If the shape of the cell is such that the intercell vectors which connect the expansion centers 
of each cell are larger than all of the intracell vectors between a cell center and its boundary, 
the generalized cosine matrix, Cz$, can be be expanded using the addition theorem[29] for the 
spherical Hankel functions 

allowing the gcnernljzed cosine matrix to be written, for n # n', as 

where G L L / ( R n r n )  is the real-space structure constant between the centers of the two cells, and 
is given explicitly by the expression, 

GLLI(R) = 4rr it"'-'" C (LL'L'') IILII(R), 
L" 

(39) 

with C( LL'L") being a Gaunt number,  (integral of three spherical harmonics). For periodic 
materials, the Fourier transform of G~,y(Fl+,,,,l) yields the well-known structure constants of the 
K K R  method. With the use of Eq. (38), the secular equatioii which determines the allowed 
energies can be written in the form, 

det IgnCn - 5'' [GnrnSmJl = 0, 

Here, quantities in bold type denote matrices in L-space, and the brackets indicate that for nearby 
cells, e.$., nearest neighbors, the product of the structure constants and one of the sine rnatrices 
must be csried to  convergence before the other sine matrix is multiplied by the resulting product. 
The last expression shows that the secular equation for MST for space filling, even non-convex but  
non- overlapping cells has  the same form as the secular equation for MT potentials. In particular 
the separation of structure and potential, Le., the structure constants and the sine and cosine 
matrices, thah characterizes MST in the MT remains a feature of the non-MT case subject to  the 
constraint mentioned above, namely that the expansion of the generalized cosine matrix EQ. (38) 
into a, structure constant matrix and a sine matrix requires that the distances between expansion 
centers in different cells exceed the distances between the expansion center far a given cell and 
a31 points on its boundary. 

Formally, Eq. (40) can be written in a number of equivalent forms which, however, exhibit 
different convergence characteristics. It i s  possible, for example, to derive rigorously a version of 
the MST equations which omits the 3, Le. 

but the energies for which this equation i s  satisfied will not be variational with respect to  the 
wave function as are t h w  obtained from eqs.(33 or 40). The result that some forms of the K K R  
secular equation are variational while others are not is a new feature which distinguishes non- 
muffin tin MST from the muffin- tin limit and is due to the conditional convergences associated 
with nor1 muffin-tin MST and the consequent necessity ob converging internal angular momentum 
sums. The practical consequence of this i s  that one may not view F4. (40) or A%'? in Eq. (36) 
a the products of square matrices 3" and C""'. 



Tablc I: Calculated energies and wave function errors for the  second and third $; = 0 states of a 
square lattice, These calculations employed the variational version of MST, Eq. (31). 
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NUMERICAL RESIJLT'S 

In order to demonstrate the validity of Eq. (40) and the variational nature of the energy for 
its solutions, we have calculated the energy and the wave function for some of the k = 0 states 
of a two dimensional square lattice. 11.1 this test the individual potentials un(r) were taken as a 
constant Vo within cell 1% and zero outside. The cells were squares arranged 80 aa to completely 
fill the plane. Thus, although the total crystal potential was, VO, a constant which allowed us to  
trivially calculate the exact wave function and eigenenergies of the Schrkiinger equation, MST was 
faced with the f'orniidsble task of representing these functions using the free space Green function. 
Details of the the two dimensional "empty lattice test" such as the two dimensional versions of 
If&), J&),  and GLLI(R) can be found in papers by Butler arid Nesbet[SO] and Faulkner[l4]. 
Note, however, that our conclusions concerning the validity of MST as determined by the empty 
lattice test differ from those of Faulkner, who  obtained extremely poor convergence in angular 
momentum and was not able t o  decide whether or not near field correctioiis are necessary. 

Results for the empty lattice test are shown in Table I. The depth of the potential in this 
example is taken as Vo = -9, and the side of the square is T .  The energy is measured in units 
of 1-2  where 1 is the unit length. The maximum angular momentum used in the calculation is 
denoted by tmal, while Ecroct and EcQlc denoted the exact and calculated energies and MSWFE 
denotes the mean square error in the wave function, E,,, denotes the energy calculated by using 
the calculated MST wave function in the Rayleigh-Ritz variational expression for the energy. The 
column denoted by C,,, shows the maximum value of the orbital angular momentum used in 
the expansion of the wave function. We emphasize, however, that it is necessary to converge 
all internal s u m  if one is to obtain meaningful results in a test such as this. Thus, internal 
sums were not truncated at L,,,, but carried to full convergence by means of calculating the 
quantities CE$ through direct integration for the first two nearest neighbor shells of a given site. 
Since the state being investigated was a state with full square symmetry, only values of orbital 
angular monieatum evenly divisible by four entered the calculation. The column denoted by Ealc 
contains the energies for which the secular Eq. (40) is satisfied. We also show the ratiG of the 
error in the  energy ( Ecoic - 
as 

where the calculated value 

Eezaci) to mean square error in the wave function (MSWFE) defined 

1 drl +caic(r) - +cract(r)12/ 1 drl +ezoctl2c (42) 

of the  wave function, was obtained from J3q. (24) using the 
coefficients u2 obtained form Fq. (33). Findy ,  we show E,,,, a variationally refined value of 
the energy calculated by using the Rayleigh-Rita variation principle with the calculated wave 
func tisn 

The important point to notice is that  the error in the energy is of the same order as the mean 
square error of the wave function, even though both of these vary over eight orders of magnitude 
for the different d u e s  of lrnaz. Furthermore, it is clew that the variational procedure does not 
irlprove the energy over the d u e  obtained from the secular equation itself. These results may 
be contrasted with similar calculations using the version of the MST equations without the 3, 



Table 11: Calculated energies and wave function errors for the second and third k = 0 states 
of a square lattice, The parameters are the same as for the previous table, These calculations 
employed a non- varjationd version of MST, Eq. (41) .  

-4.0386580 1 . 8 8 ~  18- - 4 e 244 9788 
-5.0 125 155 3.39x 10-5 -369.22 -4,9996807 

4 -0.8783834 1.87 x 65.10 -0.970498 1 
581 1.48 -0,9999960 -1.8 -0.9992260 1,33 x 

Eq. (41 ) ,  which arc shown in  Table 11. The energy for this version improves ,with increasing tmaZ 
but not its fast as the mean square error of the wave function. For this version, however, the 
Rayleigh-€ti tz refinenient does greatly improve the energy, The wave functions are of comparable 
accuracy in the two versions of MST. 

DISCUSSION 

The question of whether or not the MT form of MST reinaing valid in the case of space-filling 
cells has been debated in the literature for over twenty years. I t  is relatjvely easy to  derive 
the MST equations for non-spherical muffin-tin potentials and to postulate that the same form 
remains valid for space filling cells. A more careful consideration of the problem, however reveals 
several reasons for doubting that this could be the case, Approaching the problem from the 
point. of -(iew of scattering thetory one soon realizes that a partid wave which is scattered off of a 
non-spherical scatterer does not attain its asymptotic form within a sphere which circumscribes 
the potential. Moreover, if one attempts to  use the asymptotic form within this circumscribing 
sphere it can be found to diverge. On the other hand if one approaches the problem from the 
point of vjew of the Lippmann-Schwinger equation one quickly faces the problem of expanding 
the Green function in partial waves while rigorously maintaining the proper conditions on its 
argurnents lo assure convergence. 

It i s  clear however, that although the considerations of the previous paragraph indicate the 
conceptual difficulties that must be faced in extending MST to treat full ceU potentials they do 
not constitute a proof of the existence of "near field corrections". The formalism presented above 
makes it apparent that MST can be applied t o  spacefilling cell potentids provided that citle is 
taken to guarantee the convergence of sums over angular momentum states. In this regard, MST 
assumes identical forms in the MT and non-MT caws, However, we have also established that 
the variational properties of MST depend strongly 011 the particular form of the secular equation, 
Depending on that form, the eigenvalues of the secular equation may or may not be variational 
with respect to  changes in the wave function. This and other features of non-MT scattering 
theory will be explored in greater detail in a future publication[28]. 

APPENDIX 

We pointed out above that the replacement of an integral over the surfa,ce, SI, of the sphere 
bounding an assembly of scattering cells by an integral over the surface of one of these cells may 
not be justified because the former includes *the singularity of the Hankel function whereas the 
latter may not. To see that this circumstance does not affect the value of the functiond A, we 
calculate and compare the values obtained for the surface integral in the two cases. 

We begin by wyitting Eq. (12) in the form, 
r 

A" = /* dr+*(r)vn(r)Bn(r), 
n 

144) 



where 

Using the expansiou of zC,(r) in terms of basis functions, Eq. (24)' we can write 

where 

(45) 

If cells n and rn are neighbors far enough apart the surface S, can be expanded YO that  the 
conditions for the expansion of the free-particle propagator are satisfied. In that case, BLP can 

where the square brackets denote a Wronskianm type surface integral over the surface of cell m of 
an irregular solid harmonic centered in ceU n and a basis function centered in cell m. 

It is slightly less obvious but equally true that  BET can be written in this form when n and m 
are the same cell or near neighbors. First consider the case where m = n. In this cme the surface 
S, in Eq. (47)  can be expanded to a sphere which circumscribes the cell without changing the 
value of BzF. This can be seen by using Green's theorem to convert Eq. (47) into a valumt 
in  t egrd, 

fiom which it is clear that 52, can be any volume which includes cell rn, i.e. the region where 
u,, is non-zero, and therefore S, can be any surface which encloses cell rn. Zxpanding S, to a 
sphere circumscribing cell m allows the use of the Green function expansion to obtain Eq. (48), 

When rn and n are neighbors we can again expand thc fiurface Lcm so that  d points on its 
surface are farther from the expansion center in cell n than all points 0x1 the surface S,, (Fig. 2). 
In performing this expansion, however, it is necessary to enclose the expansion center in cell n 
wi th  the result that  the value of the surface integral is changed. Let s, represent the expanded 
surface and let represent the value of the surface integral over the expanded surface. It is 
clear that  

@7" (r) = $Tt( r) - / dr'G( r ,  r')v,( r')q!ft( r') 

BZF(r) = - 1 dr'G(r, r')um(r')+r,(r'). 
while 

Thus &T"(r) = B$"(r) + g5rt(r). Now BE'' can be written as 

Consider the surface integrals [ U Z , , ~ ~ , ] s , .  Each of these may be split into an integral CF I $r S, 
and an integral over the the surface hounding the remainder of am. This latter surface integral 
may be reduced to the integral over a small sphere centered at  the the expansion center in cell 
n. Thus 

where S!! is a small sphere surrounding the expansion center in cell n, i.e. the singularity of 

I@, 1 4rdsm = [Hi, > 4 r t 1 s m  i- [HE, 7 4ClS0, (53) 

f l L ,  ( fn) .  
Now &', satisfies the Helmholtz equation, (V* -+ E)+r,(r) = 0, for r outside of ceU m. For 

Y 

this reason, $E, can be expanded in regular solid harmonics about the point r, = 0, 



and 

which is valid so long as 1: is inside a sphere inscribed within cell n. However, this relation 
defines a boundary condition for the wave function represented by the above summation and its 
derivative on the surface of this sphere, This together with the fact that the same wave function 
satisfies the Hclniholtz equation, uniquely determines its values throughout the cell, and in fact 
throughout the region where u, = 0. Consequently summation(56) gives drl(r)  everywhere in 
cell n. 

Thus BL?(r) can be written as 

(57) 

which implies (upon comparison with Eqs.(5O) to (52)), that  B""' can be written in the form, 

even if cells n and m are near neighbors. Th  value of BEY' does not change when the Furface of 
integratioii i s  expanded from that in  Fig. 2 to !3' in Fig. 1. Thus, an integra3 over S' in  Eq, (29) 
can be replaced by an integral over a cell surface in a l l  cases, which justifies Eq. (31). 
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Figure Captions 
Fig. 1 The surface of integration S' of a sphere bounding a scattering assembly. 
Fig. 2 The surface integral over cell rn may be expanded to enclose an adjacent cell, ?a, 
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