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Abstract

The guiding-center equations are derived for electrons in arbitrarily intense
laser fields also subject to external fields and ponderomotive forces. Exhibiting
the relativistic mass increase of the oscillating electrons, a simple frame-invariant
equation is shown to govern the behavior of the electrons for sufficiently weak
background fields and ponderomotive forces. The parameter regime for which
such a formulation is valid is made precise, and some predictions of the equation

are checked by numerical simulation.
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I. INTRODUCTION

The increasing degree of interest in high-intensity lasers (a = eEp/mcw ~ 1) motivates a
theoretical examination of the behavior of electrons oscillating in the fields of such lasers. The
electron motion is well understood when the only forces present are those from the wave!; this

paper examines the motion of electrons when other fields are present in addition to the wave.

The nonlinearity parameter a can be understood as the ratio of the momentum imparted
by the wave field in a single oscillation to me. (For A = 1 um, a = 0.84 at an intensity of
I = cEy?/8x = 10'® W/cm?.) As a ~ 1, the quiver velocity of an electron in the wave becomes
relativistic, and, as a result, the magnetic component of the wave begins to affect the motion.
Because the electron velocity is relativistic over much of the orbit, the electrons can exhibit an
increased “effective mass” or increased inertia to applied forces. While effective mass equations
do appear in the literature, there remains a need for a general and systematic derivation of such
equations, including precise statements concerning the limitations of such approximations. We
show here that the non-oscillatory part of the electron motion is given by a simple guiding-center

equation, which predicts some interesting results, verified here by numerical simulation.

The formulation developed here is useful in many situations of practical importance where
electromagnetic fields in addition to the wave field are present, and where these background fields
are much weaker than the wave field and vary only slightly over oscillation time and space scales. For
example, longitudinal electron oscillations in a plasma occur with characteristic time 1/w, > 1/w
and space scale roughly the Debye length Ap, which may be larger or smaller than the beam
wavelength. Plasma oscillations in the presence of laser pulses play key roles in the beat wave
accelerator? and wakefield accelerator.® Close-encounter collisions involving oscillating electrons
can occur on time and space scales smaller than those of the oscillations, and in this case the
enhanced-mass picture ceases to be valid, but a different form of the equations derived here can be

applied to this case as well.

Various accelerator schemes®~% attempt some sort of conversion of the intense transverse fields
of a laser into a more useful form, and constraints on when such conversion can occur are given

here. The general constraints given here confirm and generalize the constraint found by Apollonov
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et al.b for a specific accelerator design, and also explain tl.xe optimal parameters Kawata et al. found
numerically for two accelerator designs.>—® Essentially these accelerator designs convert some of
the relativistic quiver velocity into drift velocity, and this can only be done with certain types
of background fields. Powerful laser pulses in the presence of background fields may also have

applications as diagnostic tools in plasmas.”

Electrons struck by a laser pulse experience a ponderomotive acceleration at the beginning of
the pulse that can result in a relativistic drift velocity (distinct from the quiver velocity) during
the body of the pulse.? It turns out that the ponderomotive acceleration appears naturally through
an analysis of these drift velocities. We derive a simple equation, (40), which governs the time-
a.verageq behavior of oscillating electrons in the presence of weak background fields and/or weak
ponderomotive gradients, for incident plane waves of arbitrary intensity. We show that, in some
ways, the character of the ponderomotive force in the presence of additional fields is changed. For
example, in the absence of background fields, the ponderomotive force, taken over the whole wave,
only displaces the particle and does not change its energy, while, in the presence of a background

electric or magnetic field, energy transfer from the ponderomotive force can take place.

It will be assumed throughout that the pulse has no transverse variation and has phase velocity
equal to the speed of light in vacuo. The small spot sizes required to achieve very high intensity
do create some transverse variation of the pulse, but in many cases this variation is small over
a single electron’s orbit. For vacuum applications the assumption that the phase speed is equal
to ¢ clearly poses no problems, although in plasma applications the phase speed may vary. Often
plasmas irradiated by intense lasers are quite underdense, so that the deviation of the phase velocity
from c is small. Longitudinal variation of the pulse leads to the well-known ponderomotive effect,
which is considered here in some detail. Transverse variation of the pulse leads both to transverse
ponderomotive effects and to waveguide-like longitudinal fields; while these effects can be significant
and useful, as in ponderomotive focussing® and longitudinal acceleration!®, in many applications
they are either small in magnitude or affect only a small fraction of the irradiated electrons. The
analysis is specific to the case of nearly monochromatic laser light, because in the nonlinear regime

the superposition of frequency components becomes very complicated®?.
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Some predictions of the analytical framework derived here are checked with a short computer
code that integrates the Lorentz force equations numerically. The code is also used to examine
regimes beyond the scope of the equations here, in order to understand qualitatively the chrnges

in the electron motion.

In Section II the guiding-center equations are found by using special features of the drift so-
lutions of elegtromagnetic waves. Section III details the assumptions leading to the guiding-center
equations and relates the conditions for its validity to optimal designs for certain accelerators. In
Section IV, numerical examples are used to show, when conditions for its validity are not satisfied,
the breakdown of the guiding center equations and the subsequent interesting dynamics. Section
V examines the classes of fields that allow the guiding-center equations to be averaged to a simpler
form. Section VI derives guiding-center equations that are frame-invariant, including the pondero-
motive force in the presence of background fields. Our main results are summarized in Section

VII.
II. DERIVATION OF GUIDING-CENTER EQUATIONS

To derive the guiding center equations, we treat a background force as a series of closely-spaced
impulses. Between the impulses, the electron is subject only to the intense electromagnetic wave.
The size of the impulse is approximated as the integrated force over the unperturbed trajectory of
the electron in the intense wave in the time interval between the impulses. Then the effect of the
background force is updated at each impulse, and such an approximation converges in the limit of
infinitesimally spaced impulses. (This approach is similar to the Picard method used in the theory
of differential equations 1?) Certain features of plane waves make it possible to find the response
for all times from an arbitrary impulse; then, if it is possible to integrate over the applied impulses,
the electron trajectory can be determined. The only approximations and constraints enter at the
integration stage.

This approach leads to tractable eqations for the problem at hand for two reasons: one, exact

analytic solutions can be written for electrons in arbitrarily intense electromagnetic plane waves!?

)
and, two, plane waves remain plane waves in any frame of reference, so that the exact solutions are
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applicable as the particle drifts. These two properties of intense plane waves can be used to derive

a simple and accurate guiding-center equation in the presence of external forces, as we now show.

First, note that there are exact analytical solutions for the motion of individual electrons in
a plane, monochromatic wave of any polarization (see e.g. Landau and Lifshitz'® for the case of
linearly and circularly polarized waves; the case of elliptical polarization can be handled similarly).
Integrability is a consequence of the existence of three integrals of the motion.!* The canonical
momenta

Py =py +edy/c, P, =p, +eA;/c (1)

are conserved, because of the system’s symme’ry with regard to translations perpendicular to the
direction of the wave’s propagation. Here, p denotes the kinematic momentum and P the canonical
momentum, with the direction k of the wave is taken along the z-axis. In addition, there is a third
invariant of the motion mecy — p, (here 7 is the Lorentz factor of the electron), associated with
the dependence of the problem on z and ¢ only through the phase n = w(t — z/c). The exact
solutions of the motion can be derived from these three constants of the motion. In the presence of
background fields, however weak, these three quantities are not necessarily conserved, raising the

question of how the motion is modified.

Second, note that a plane wave in one frame appears as a plane wave in all other frames,
though possibly with a different direction, frequency, and amplitude. Monochromatic waves remain
monochromatic, however, and polarization (i.e., eccentricity of polarization ellipse) is also invariant.
The norm of the vector potential, \/m, which is just ¢Ep/w for a linearly polarized wave at a

crest is invariant, so that a strength parameter a can be invariantly defined by

me/2(A,A#) )

a= c? N

with () denoting an average with regard to phase. (Note that some other authors define a without
the factor of 2.) Thus, given a drift velocity v, relative to the lab frame and a plane monochromatic
wave in the lab frame, there exists a solution of the equations of motion for which the average value
of the electron velocity, as calculated in the lab frame, is v4. In the frame moving with velocity
v4 relative to the lab frame, the electron has zero average velocity, and in this frame the electron’s

path is a circle for circularly polarized light and a figure-eight for linearly polarized light.!?
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Actually, in our analysis we will use the inverse theorem: given any instantaneous velocity for
the electron v, and the phase 7 of the wave at the electron’s location, there exists a unique frame
moving with some velocity v, different from v, in which the electron is moving in a stationary
figure-eight orbit. (Some subtleties do arise in the definition of the drift velocity when background
fields are present. The definition to be used here is that the drift velocity is the average velocity
that the electron would have if all background fields were instantaneously eliminated. For further
discussion, see App. A.) There are explicit functions p, (1) and p(n), depending on the wave only
through a, that specify the components of the electron momentum perpendicular to and parallel
to the wave axis in the rest frame (p, is a single function for linear polarization and two functions
for circular polarization; the idea is the same). The functions p, and p| arc calculated explicity
in Landau and Lifshitz.!® In the unique rest frame of the electron, the components of the electron

momentum parallel to and perpendicular to the wave axis are p, and py.

At time g, suppose that the electron has zero drift velocity in the frame where our coordinates
are defined. In this frame define % parallel to k, the wave axis. After a small time step d¢, the

electron has position and momentum given by
x(to + dt) = x(to) + v(to) dt + O(dt?), p(to + dt) = p(to) + Fwave 4t + Fexy dt + O(dt?). (3)

Here Fyave and Fe,; are the forces on the electron from the wave and the background fields. After
this time step, the wave has some phase 7 that is unchanged by frame switches (the product of
the wave and position four-vectors). Our task is to determine the drift velocity dv4 of the frame
in which the electron would be at rest on average if the applied force F.;; went to zero after the
time dt. We know that p(tp) + Fwave dt satisfies the equations of motion at phase 7 in the original
frame, i.e., in the absence of the background fields this value for the momentum would be part of

an oscillation with zero average velocity in the original frame. In other words,

P:(to) + Fwavexdt = pl('l)
(4)
py(tO) + Fw&veydt = p"(f]).

The important feature of the functions p; and py is that they depend on E and w only through

the ratio F/w, which is a Loreniz invariant, as explained above.
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Now consider the electron momentum in the frame moving with velocity dv relative to the

original frame. In this frame the electron has momentum components

P, = pr — mydv,
, (5)
Py =Py — mydv,,
where v is the Lorentz factor of the electron in the original frame. In the primed frame, however,

the z axis, which is parallel to the original z axis, is no longer parallel to the wave axis, because

the wave direction changes under Lorentz transformations. Assuming dt taken small enough that
Fext dt ~ dvy < ¢, (6)

the wave in the new frame is altered by a rotation through an angle dv,/c. This result (the
aberration of light) can be derived either from the transformation of the electric and magnetic
fields or from the velocity addition formulas, treating the wave as a particle moving with the speed
of light.!® The frequency of the wave is also changed, so the amplitude of the oscillations is changed,

but the relationship between momentum and phase depends only on a and i3 hence preserved.

Fig. 1 shows the figure-eight motion from the same plane wave in two different frames, one
the lab frame (in which the wave travels in the z direction) and the other moving in the positive
y direction with velocity 0.5¢. The angle of rotation satisfies sin @ = dv,/c, and (to first order in

dvy/c) cos @ = 1. From this rotational effect,

p,dv pldv
P = pl + = = po — mduzy + =
' ,  pLdv p.dv (M)
P¢=Py—x—cl'—“?y—md”y7“z—c—y-

Our goal is to choose dv, and dv, so that the electron is at rest on average in the frame moving

with velocity dv. In other words,

Py = p;(n)
, (®)
p) =p.(n).
Combining equations (3), (4), (5), (7), and (8), and writing dp for Fe, dt, we obtain
m dv
py(n) + dpz — mydv, - _Pé(ci_v = p)(n)
mpy(n) dv
pL(n)+ dp, — mydvy + —L(‘c—)"‘"y = Pi(ﬂ)- (9)
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In these equations we have dropped terms of order dv?/c?, since these terms make no contribution
in the limit d¢t — 0. Related terms will return, however, when we attempt to sum the infinitesimal
impulses from the background field. Solving the above equations, we obtain

_ dp: Py dp, _ cdp,
dv, = —2% _ , duy = ———¥
my  my(mey - py(n)) mey - py(n)

(10)

We can simplify these equations slightly by noting that 4 — py(n)/mc is a constant (called v by
Landau and Lifshitz, henceforth o) with value /1 + a?/2, where a is the strength parameter of
the wave defined above. The phase-averaged (not time-averaged) relativistic mass of an oscillating
electron is 79, and the reciprocal of the time average of the reciprocal of vy for an oscillation is also

v0. This important relationship follows from the third invariant of the unperturbed motion:

v
7—%:70:.)12:1———?"—:1-——':

I
11
m v mey c (11)

&5

Therefore averaging 1/+ with regard to time is equivalent to averaging 1/4¢ (a constant) with regard
to 7. For circular polarization p) is zero and 7y = 7. For linear polarization, the time average of
P|| is nonzero in the rest frame, where v averages to zero; this occurs because the variation of v is
correlated with that of p;. The statement that the electron has zero average momentum in the rest
frame is thus not strictly correct; the rest frame should be defined as the frame with zero average
velocity, in cases where the two are not identical. The calculations for the z direction are the same

as those for the y direction, so finally we obtain

= 9 dv, = dp- dv,=¢_1££_ pydpy, _ p:dp.

mYo omy’ my micyr micyy

(12)

writing p, and p, for the two transverse components of the exact solution for the momentum (which
are equal to the y and z momenta in the original frame neglecting the external force, or to the y
and z momenta in the new frame if we take into account the rotation required by the aberration
of light).

The equations (12) hold for arbitrary polarization and for any wave causing periodic motion.
The equations and the approximation used to derive them are accurate for arbitrary a; however, in
deriving them we made the assumption that the total velocity gain from the impulse was much less

than ¢. The form given above is useful for collisions and other short-time-scale behaviors, but we
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can extend it without great &ifﬁculty if we retain the assumption that the total momentum supplied
by the external forces is insufficient to make the drift velocity relativistic (the quiver velocity, of
course, remains arbitrarily relativistic). Note that the velocity gains are separately linear in each

of the components of the applied force.

There are three effects of order v,4/c smaller than the leading velocity gain we wish to calculate.
Including these effects complicates the equations sufficiently that numerical solution seems to be
the only means of future progress. Velocity gains from a continuous series of impulses can be added
simply (i.e., lin=arly) if we know that the sum of the magnitudes of the velocities is much less than
c, but relativistic addition of velocities introduces second-order terms that become comparable as
Vg nears c. As described above, the perceived change in the wave’s direction of incidence has the
effect of a rotation of coordinates. This rotation means that the wave’s direction of incidence in
the drift frame is no longer parallel to z, but the error arising from ignoring this rotation is of
order vg/c smaller than the result of the first-order calculation (since the rotation angle scales as
vg/c). Finally, the background electric and magnetic fields in the drift frame differ from those
in the original frame by a factor of order v4/c. The assumption that the drift velocity remains
non-relativistic under small perturbations is justified by the impulsive equations above. Ignoring

these three corrections, we obtain the differential equations for the drift velocity

dvy

S R L R 43 13
dt  my’ dt my’ dz  my mey meyo (13)

where v, and v, represent the quiver velocity in the y and z directions rather than the drift velocity.

For many background fields the differential equations can effectively be averaged over a period
to give the resulting drift acceleration. For example, for a uniform electric field E along x we obtain
that the drift velocity after one period is just eE/myow (which only approaches c for E ~ 10'°
V/cm) along k. For sufficiently weak and uniform fields, however, it will be shown that the second
and third terms in the v, equation vanish and the < in the first term can be averaged to vp. In

this case the equation becomes simply

dvd F
praa— (14)




Equation (13) and the equation for the drift motion (14) are a major result of this paper; we
now turn to the conditions of applicability of these equations and the errors caused by the use of
the averaged motion (Section III), the extension of these equations to various types of background
fields (Sections IV and V), and generalization of these equations to the case where the wave fields
are changing in time (Section VI). Section VI also contains a frame-invariant version of the guiding-

center equation.

The impulse equations contain an interesting asymmetry between the z response and the y
response, in that any impulse acting in the y direction accelerates the electron as if it had mass
m7yo, rather than m#, the effective mass in the z direction. The effect of dp, on the z motion
is also surprising. These two effects are observed in a single-particle numerical simulation of the
impulse problem. For uniform fields the asymmetry between z and y disappears. However, it is this
asymmetry that explains the ponderomotive acceleration along the wave axis, which is examined

in detail in Section VI.
III. CONSTRAINTS ON THE GUIDING-CENTER DESCRIPTION

This section examines the conditions under which (13) is valid, and the following two sections
look at the conditions under which equation (13) can be averaged to (14). As we show, there
are a number of subtleties in the use of these equations. First, note that the use of the averaged
acceleration in place of the actual acceleration introduces an error, as in the following example. For

an electric field along y, the drift velocity in the y direction after a period is eE/myow, and the

~eEvy, dt
/ ke Rl (15)
period TMCY0

drift velocity in the z direction is

This integral is zero to our current level of approximation, so that there is no velocity gain over
a period in the z direction. However, the integral of the drift velocity over a period (“the drift
displacement”) car be nonzero, depending on when the period is taken to begin, since the electron
may gain drift velocity in one direction and then lose it, resulting in zero net velocity gain but

in some position gain. Fig. 2 shows the acceleration, velocity, and displacement graphs in the z
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direction for an applied field along y that is turned on instantly at one point in the oscillation. We

have

valt) = /‘ —eEvydt _  eEy(t) (16)
’ 0o MY mcYo

where y(0) is chosen to be 0 and y(t) represents the electron’s displacement within its figure-eight
orbit rather than relative to the lab, If, say, at time O the electron is at its highest y displacement,
then for all times the velocity in the z direction will be in the direction eE, although this velocity
is periodic in the same way as y(t). Using the equation given below for the function y(t), the

integration gives an average velocity in the z direction of magnitude

_ 2¢Eynax _ 24a’c E

= . 17
meyo 74 Eo (17)

Vz

This is one example of a systematic error resulting from the use of the average acceleration
as an actual acceleration. In effect, information about the initial phase of the electron is lost in
the transition to averaged “guiding-center” equations. The use of the averaged acceleration as
the actual acceleration necessarily gives the correct final velocity, taken over an integral (or very
large) number of periods; the final displacement may be inaccurate, as in the example given above.
Often this “phase velocity” is of little interest, for two reasons. The first is that often the resulting
velocity is less than the change in the drift velocity over a single period; since the drift velocity
accumulates over many periods while the phase velocity does not, the drift velocity over practical
times is much larger. As an example, consider the case with a 3> 1 and an applied electric field in

the y direction. Then
o = XE _ VoctE
r = Eo b y Eo

(18)
and after a few periods v, is much larger than v,. This argument does not hold for the case
of a uniform magnetic field or other field which produces no drift acceleration averaged over a
period; in this situation the phase velocity can dominate. The other reason the phase velocity
can typically be neglected is that in practice either the applied field or the wave field is turned
on over many oscillations. If the rise of the wave or electric field is uncorrelated with the wave

frequency, then the effect of the phase velocity becomes much smaller. This happens for the same

reason that a smooth wave packet (i.e., one which is effectively linear over a period) tends not to
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produce a significant displacement in the transverse direction: because the acceleration oscillations
are changing in amplitude, the velocity changes sign after each period and oscillates with roughly

zero average. As an example, note that

<'[)tasint'dt'>=(a—acost)=-§ (19)

so that the phase velocity is nonzero, while for a linearly rising wave packet

t
</ t'sin t' dt’> = (sint — tcost) ~ 0. (20)
0

The average of t cos t is effectively zero, in that it remains bounded while the wave amplitude grows
without bound.
Averaged over all initial phases, the phase velocity vanishes, for otherwise it would contribute

to the acceleration. This can be shown as follows: if a(t) is the acceleration producing the phase

velocity at time ¢, define a function v(t) by

ot) = /o a(d) dt. (21)

Because the average of a(t) is zero, v(t) must be a periodic function with period 2« /w. Then for

the averaged phase velocity we have

w 2 fw to+2n/w t
(v) = (=)* / dto dt / a(t) dt'
2z’ Jo ¢

to 0

w 27 jw to+2x/w
= (5;)2 /0 dto /‘o (v(t) = v(to)) dt

w 27 fw to+2x/w w 2rfw
= (2) /0 dtO[o v(t)dt—i-;r-/o o(to) dto

w 2nfw
v

(22)

P w 27w p
(t) t— 5—;‘/0 ‘v(to) to=0
where in the next-to-last step we have used the periodicity of v.

The use of the averaged acceleration eliminates many of the terms in the equations for the drift
motion, and the remaining terms closely resemble those for a non-oscillating electron with increased
mass, as will be shown below. If the velocity gained by an electron is emall over a single period,

we can describe the behavior of the electron over many periods by using the acceleration averaged
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over a period as the electron’s acceleration, and then treating this acceleration relativistically; this
method will give the correct answer as long as the velocity gain over a period remains small, and
will continue to describe the motion correctly as the aggregate drift velocity becomes relativistic.
In some cases the secondary terms in v, do not vanish and make a necessary contribution, as in the
case of a ponderomotive force associated with the growth in intensity of the original wave, which
will be examined below. It will be shown that for many types of background fields, the electron
motion is given to a high degree of approximation by a simple equation that effectively sums the

contributions from the background fields and the wave’s ponderomotive force.

One condition already mentioned that must be satisfied for the drift equations to be valid
is that the drift velocity gain induced by an external field over a single period of the wave be
nonrelativistic. If the drift velocity gain is relativistic, then the simple addition of velocities breaks
down and transfer of energy from the wave to the electron or vice versa is possible. In more precise
language, the addition is legal, and the motion described by the equations (13), if in the frame

where the electron has no drift velocity the applied fields satisfy

cE.\pplied Eapplied
jed = = 1. 23
@applied MCWwave Eqit < ( )

Here eEc;jy = MCWwave. (Bapplied can be substituted for E,ypjied in the above). Note that this
constraint has nothing to do with the strength of the wave, and the wave can be weaker than
the applied field, as long as the applied field is sufficiently weak. Strong background fields are
numerically observed to produce very complicated motions, although certain regularities seem to

exist in some cases.

As an example of the importance of this constraint, consider the accelerator scheme of Kawata
et al.’, whereby a transverse static electric field is used to convert wave energy into particle energy.
The constraint must be violated to produce significant energy transfer. In the lab frame the static
electric field has Epplied/ Ecrit = 2.18 X 1075, In the frame of the electron, however (which has inital
velocity 0.9999¢), wwave and E,, are decreased by a factor 2y ~ 141, and E,pplied is increased by a
factor of 4. Thus in the electron’s frame Eappjied / Ecriv ~ 0.212, and the absorption of wave energy
by the electron does not contradict the above results. The results of our numerical simulation for

these parameters match those in this paper. In another paper® Kawata et al. use a magnetic field
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with a,ppliea = 0.0057 in the lab frame and initial 4 of 3.2, so that 2y2aj,p = aqree = 0.117. In
fact, the correct v to use in calculating aq4rq should include the ponderomotive increase in the
electron drift velocity, which will be discussed in greater detail below; the actual ag4.ir values for
the two methods described above are 0.243 and 0.133. In another acceleration method, that of
Apollonov et al.4, the prescribed initial v is equal to (wmc/2eB)!/?, which is exactly our condition

that 2y2B ~ E..

If an applied electric field is weak, then according to the above equations the drift acceleration
of the particle can never be more than twice as large as the acceleration of a stationary electron in
the same field (“twice” because of the additional terms in the z equation) and will typically be less
because of the increase in effective mass. A weak applied magnetic field that is highly nonuniform
over a figure-eight can lead to significant acceleration, and this case is considered below. For
simplicity, the rest of the results in this paper will be specific to the case of linear polarization

unless otherwise noted. The generalization to other polarizations is in most cases straightforward.
IV. SIMPLE APPLICATIONS OF THE EQUATION

Some results regarding simple types of background fields can be easily determined from the
equations above. For simplicity, these results will be derived for the case of linear polarization;
in most cases the treatment for arbitrary polarization is similar, although the results may differ.
The unperturbed equations of motion in the rest frame of the electron, for the vector potential

A = A, = —amc?sin(n)/e, are'?

a’csin2y accosq

= = =0,
a’mccos2n .
Pe=p|=-——p——, Py=pi=—emcsiny, p;=0. (24)

As described above, the drift induced by a uniform electric field is in the direction of the
electric field, and the electron’s effective mass is m+yy. For a uniform magnetic field, the equations

of motion (13) give the integrals

Av, = _;”cff‘dt, Av, = /

e(vzBy — V”B’)dt, Avy = ev, B, _ —ev. B, ﬁdt.
mcYo mcy myoc ¢

(25)
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Since [wv;dt = 0 for each index i, the first two integrals are zero. The z integral is also zero, as
can be verified by direct computation or by use of some symmetries of the figure-eight motion that
will be described below. As a result, a uniform magnetic field in the rest frame of the electron has
no effect to first order in the strength of the magnetic field. For large magnetic fields the motion

ceases to oscillate in an orderly manner.

This result can be used to explain the behavior of drifting figure-eight orbits in a uniform
magnetic field. Suppose for example that a laser pulse induces (through the ponderomotive force)
a drift velocity relative to the lab frame. During the body of the pulse, figure-eights moving with
this drift velocity then move in cyclotron orbits in the presence of weak magnetic fields. In order
to get these effects from the equations above, we begin by transforming the magnetic field from
the lab frame to the electron’s drift frame. The equations below are written for the case vy L B;
a parallel component of v; merely makes the motion helical rather than circular. The fields in the
drift frame are then E = q4vy/c x B and B = 94B. Here 74 is the Lorentz factor of the drift
motion. The drift velocity of the figure-eight in the lab frame can be arbitrarily large without
causing difficulties for the method described above, as long as the change in drift velocity over
a period is nonrelativistic. In this moving frame, then, the electron experiences an acceleration
perpendicular to the direction of its drift velocity with magnitude ey4v4B/mcyo. The assumption
that the fields are effectively constant over a period in the drift frame requires that w, € wwave,
but this criterion is difficult to violate for wavelengths of interest. Essentially the criterion states
that the fields in the electron’s drift frame change slowly over a period of the wave. Transforming
a perpendicular acceleration introduces two time dilation factors of 7,4, so that in the lab frame
the electron experiences an acceleration evyB/mcyoyq4. Hence the modified Larmor frequency w,

is eB/mcyp74, and this result is observed numerically.

The multiplication of Lorentz factors in the denominator of the previous expression can be
understood by viewing the oscillating electron as a “quasiparticle” of mass mvy,. The transforma-
tions to and from the drift frame in the above calculation can be generalized simply by noting that
a particle whose displacement satisfies the Lorentz equation of motion in one frame is constrained

to obey it in all frames. Thus we have the general result that, for fields which in the rest frame
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of the electron vary slowly over the single-oscillation ti;rxe and space scales and which do not in-
duce relativistiz velocities over a period of the wave, the electron behaves like a quasiparticle of
enhanced mass mv,. This enhanced mass, and its effect on the plasma frequency, has appeared in
the literature before, for example in studies of focussing of laser beams by plasmas’®; the complete
derivation here of the enhanced mass and the conditions for its applicability, however, appear to
be new. The methods described here can also be applied for weak fields which are not uniform in

space or time, as in the following examples.

Although figure-eights make closed cyclotron orbits to first order, this analysis cannot rule out

/¢) per oscillation or (w/w,)(dv?

a velocity change of order (dv? period

period /¢) per cyclotron orbit. For

sufficiently strong magnetic fields, even electrons with zero inital drift velocity are strongly affected,
and the orbits no longer resemble cyclotron motion. Fig. 3 shows the progressive breakdown of the
cyclotron motion; it is interesting that the motion retains some regularities even for applied fields
of very high strength. When the electron has zero drift velocity in a constant magnetic field, to first
order the magnetic field causes no acceleration and the higher-order terms dominate. The methods
given in this paper calculate what in mosi circumstances is the dominant part in the motion; in
certain special cases the part calculated here goes to zero and other less easily determined behaviors
become evident. The simplest, most important such case is that of a static uniform field which in

the electron rest frame is purely magnetic.

V. MOTION IN NONUNIFORM FIELDS

-

This section extends the conditions under which the asymmetry in the guiding-center equa-
tion disappears upon averaging. The results obtained in this section will depend on the linear
polarization of the incident wave; the effects of varying fields on oscillations in circularly and ellip-
tically polarized waves are much different. The primary result is that, for linear polarization, fields
which vary linearly allow the averaging of equation (13), even if the fields vary significantly over
a figure-eight length scale. Hence the guiding-center equations are applicable for a wider class of

background fields if the wave is linearly polarized.
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A uniform magnetic field causes no change in the drift velocity over a period, as shown in the
previous section. In the presence of a spatially varying magnetic field, we expect a drift acceleration

of order

evoc AVEB
Ggrad = _—o:n—c__' (26)

where ) is used as an estimate of the figure-eight excursion distance. If the electron is moving with
velocity v, relative to the frame where the field is purely magnetic, the magnetic field (ignoring the

gradient) induces an acceleration in the drift frame of magnitude

€Vdrift Vdrite B

= 2
Qdrift me ( 7)
Comparing the two, we get
VB Vdri
Ggrad K Gdrift = “‘B—A < —5L“ (28)
08C

Depending on the size of vy, and the degree to which the magnetic field varies over A, the
gradient may induce effects less than, comparable to, or larger than the effect of the field without
the gradient. Because v,,c can be relativistic while vg,in is small, even for fields varying by a few
percent on the oscillation scale the gradient term can be larger than the static term. For the case
of circular or elliptical polarization, these estimates are substantially correct: fields varying slightly
on the oscillation scale can invalidate the guiding-center picture and yield energy transfer from the
wave to the particle. For linear polarization, however, linearly varying fields end up causing a much
smaller change in the acceleration. Magnetic fields are of primary interest because a gradient in
an applied electric field changes the acceleration by at most a factor of VE/E, so that the effect is

small unless the electric field changes on a scale length less than or equal to a period.

The figure-eight motion in a linearly polarized wave has certain symmetries, and these symme-
tries greatly simplify the calculation of drift motions. Looking at the equations (24) we see that p,
has the same value at n =0, p =7 - 0,9 =7 + 6,7 = 2r — 6 for any angle §. Similarly p, has the
same value at 7 = 6 and n = 7 — 0, and the negative of this value at = v+ 6 and n = 27 - 0. Since

the Lorentz factor v is equal to /1 + (pz/mc)? + (py/mc)?, we also have that v takes on the same
value at the four phase angles. These results are significant because the positions at the four phase

angles in question form a rectangle, and for linear field gradients the sum of the field at the four
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vertices of a rectangle takes a particularly simple form. The four phase angles 8,7 — 8,7 +0,2x — 0
correspond to the top left, bottom right, bottom left, and top left corners of the rectangle, as drawn

in Fig. 4. These facts are summarized in the following table:

Phase Pz Py v

0 + + +
x-0 + + +
x+6 + - +
2r -8 + - +

In calculating the acceleration induced by an electric field, we obtain four integrals over the
period of the motion, which can be done explicitly using (24). Two of these integrals are propor-
tional to [ E(x)dt, one is proportional to [ E;(x)/vdt, and one is proportional to [ E,(x)v, dt.
In the case of the first two types, the part of the integrand not depending on E takes on the same
value at each of the four points on the rectangles described above. The original integrals are over
time rather than phase, but they can be converted easily, noting that dt/dn depends only on v,
and hence has the same value at the vertices of one of the rectangles constructed above. If the
electric field varies linearly with position, the value of E, averaged over these four points, is equal
to its value at the center. Therefore each of these integrals gives the same answer as if E were
constant, with value equal to the value of the actual electric field at the figure-eight origin. In the
last integral, however, the integrand takes on different values at the vertices of the rectangle: it
takes on one value at the top left and bottom right corners, and the negative of this value at the
other pair of opposite corners. As a result, for a linearly varying electric field, this last integral has
value zero, the same value as it has for any constant electric field. Therefore, for a weak, linearly
varying electric field, the acceleration over a period is the same as that of a particle of mass my,
and charge e in a constant field with magnitude equal to the magnitude of the actual field at the
origin. The only interaction between the figure-eight and the field gradient occurs through the drift

velocity.

The magnetic field case is only slightly more complicated; now the integrands contain magnetic
field terms multiplied by v;, v, /v, and v,v,. (Once again an additional factor of dt/dn enters that
does not affect the calculation) The second two integrands thus average to zero for linearly varying

fields, and the first gives the same effect as that of a uniform magnetic field with value at the origin
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equal to the value of the original field at the origin. Ix;tegrating v, over a period (for a uniform
magnetic field) gives zero, however, so that magnetic gradients have no effect. The gradients
affect the motion only through the drift velocity, therefore, so that figure-eights in linearly varying
magnetic fields should exhibit B x VB drifts similar to those of electrons not in waves. This
behavior is observed numerically (Fig. 5): oscillating electrons in a linearly varying magnetic field

drift with velocity
mv} Y0Yarin VB
2¢B B’

Vg = (29)

The above calculation only considers the interaction of the figure-eight motion with the mag-
netic field (because the integration was performed over the unperturbed motion); as the drift
velocity of the particle increases over a period, the position of the particle measured in the original
drift frame no longer lies exactly on the original figure-eight. This effect is smaller by a factor
Avg/vquiver than the term calculated above, and can only be comparable to the acceleration in-
duced by a static field of equal magnitude if AvyVB/w ~ v4B, i.e., the electron is stationary or
the scale length is less than a wavelength. It should be pointed out that a spatially varying field in
the lab frame may vary in time as well as space in the electron’s drift frame, and that even linear
time variation can cause an additional acceleration. This acceleration is purely phase-dependent,
however, and therefore has a negligible effect unless the electron’s drift velocity changes greatly
within a period.

For magnetic fields which are weak but vary nonlinearly on the figure-eight scale, there can be
significant uptake of energy by the electron (i.e., transfer of oscillation energy to drift energy). The
simplest example is a field which is nonzero for only a small part of the orbit; then the figure-eight

feels a large drift acceleration over this portion of the oscillation.
VI. PONDEROMOTIVE FORCE IN PRESENCE OF EXTERNAL FIELDS

To this point the analysis has been specific to the case of plane waves of constant amplitude.
Waves of varying amplitude (e.g., pulses) generate the well-known ponderomotive force in the
direction of motion. The ponderomotive force in the absence of background fields can be easily
derived from the three invariants of the motion. We present a calculation of the ponderomotive

force using a variation of the frame-transformation method applied above to demonstrate that
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the ponderomotive force is unchanged when background fields are present, under a suitable set
of assumptions. We then derive a covariant equation of motion that describes the behavior of an
electron in an arbitrarily intense but “smooth” pulse, in the presence of weak background fields. The
ponderomotive force results from a time-dependent scalar potential that happens to be conservative
in the absence of external fields, i.e., after the wave has passed the electron has its initial energy.
An important consequence of these equations is that energy can be transferred to an electron by

the ponderomotive force if background fields are present.

The ponderomotive force derives from a change in the functions pj and p, over time, resulting
from the change in the wave amplitude a over time. We use a to denote the envelope amplitude,
rather than the instantaneous amplitude. Writing Ap for the change in rest-frame momentum
resulting from the change in the wave amplitude, our goal is to find the velocity dv of the frame in
which the electron has parallel momentum py + Apy and perpendicular momentum p, -+ Ap,. By
the same steps that led to (9), but with no external force and the momentum in the primed frame

altered by Ap,

dv, Py dv,

c

py - mdvgy - B0 = gy g Apy, pu — mdvyy + =PL+ApL. (30)

Therefore the effect of an amplitude change is equivalent in our formalism to a force of —dp)/dt
in the z direction and —dp, /dt in the y direction (the negative signs appear because the force
terms are on the left in (9)). The derivatives with respect to time should reflect only the change
in wave amplitude, i.e., —dp|/dt should be properly written (—8p;/8a)(da/dt), and similarly for
the y direction. Since the ponderomotive force enters just as any other force, and the equations for
the drift velocity are linear in the applied force, it follows that the ponderomotive force does not
interact (for short times) with any other force that may be present if both are sufficiently weak.
This rasult is nontrivial because the ponderomotive “force” is ordinarily derived from the three
constants of the motion in the unperturbed case; since these constants are not preserved, there is

no guarantee that the ponderomotive force should take a similar form. We have again the equations

of motion
fl’z__fv_ éy_’ﬁ:.p_"__FyVV (31)
dt ~ my’ dz my myy’




The ponderomotive velocity reached as a wave rises depends only on the final amplitude of the wave
and the final value of the vector potential, but this simplicity is obscured in the above equations,
in that the ponderomotive force can come from any of the three terms in the equation above.
We will concentrate on the case when the wave rises slowly, i.e., over many periods and at an
approximately constant rate over each period; in this case the y equation is zero on average, so
that the ponderomotive force is directed along the wave axis. The averaging of the z equation over
a period, using the explicit equations (24) for the figure-eight motion, is not difficult (both terms

contribute, however; see ..ppendix A) and yields for the average acceleration

dvz\ _ acw da (32)
dt 2702 dﬂ
This equation is in the rest frame of the electron, but note that da/dn is invariant, as both a and
7 are relativistic invariants. Integration of this equation in its present form is difficult, since the

(possibly relativistic) velocity of the rest frame complicates addition of velocities. Later we will

show that the equations can be written in an easily integrable form in the absence of external fields.

We thus have an expression for the ponderomotive force in the frame where the electron has
no drift velocity, as well as our previous expression for the behavior of the drift velocity in the

presence of certain types of background fields. That is, in the drift frame we have

d kd
m"foT‘;g =e(E+vyxB)+ ar;:: 2—;,

(33)

These equations can be made frame-independent without great difficulty and take a more intuitive
form. First we note that by forming the number v, defined as 1/ m, the vector vy =
(¥dyyava/c) is a four-vector. This four-vector represents the time-averaged four-velocity if all
background forces and ponderomotive effects vanished; this vanishing is a frame-invariant concept,
and the average of a four-vector along a path in spacetime parametrized by a quantity transforming
linearly (in this case the time) is a four-vector. This four-vector has constant length 1, clearly. The

equation (33) generalizes naturally to

d a
mYo :d_r = eF§vqs” + (ponderomotive term). (34)
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Here Fg is the electromagnetic field tensor. For the ponderomotive term, we need a four-vector
which is parallel to the vector (0,k) when v, is equal to (1,0,0,0). The ponderomotive four-
vector must also be orthogonal to vy, since v4 has constant length (this condition is satisfied for
the electromagnetic term by the skew-symmetry of F). The simplest four-vector satisfying these
conditions is proportional to w® —v4*(wPvy4,) where w = (w, wk) is the wave four-vector. In order to
make our equation look more like a force equation, introduce the four-vector p; defined as meyovy

(the time-averaged momentum four-vector, if all background fields disappear). By the chain rule

d dv,”
—_—= mcvd“-—‘-yg +m d

dr dr Yo dr (35)

The second term is given by (34); the first is

adro _ amevy®(wPvap) da

mevy® —> o™ i’

(36)
This term cancels part of the first term, since
(w* — vag®(wPrag)) + va® (WPrap) = W

We are left with

amcw® da

dp,”
— 37),
270 dn (37)

ar = ngVdﬁ +

which is a major result of this paper.

Because the ponderomotive term is parallel to w®, the momentum transfer from the pondero-
motive effect is equal to that from a number of photon absorptions. McDonald!? derives similar
results in the absence of background fields starting from this assumption, which is valid only in the
case of a slowly rising wave. It is important to note that the conditions for applicability of this
equation are frame-dependent: the fields must be weak and approximately uniform in the electron
rest frame. We see that the momentum transfer per proper time varies between frames in the same
way as w®, consistent with the photon picture: the number of absorptions is naturally invariant
(a count of distinct spacetime events is preserved), but the characteristics of the photons absorbed
change with w®. The rate at which momentum is instantaneously transferred to or from the wave

depends only on the derivative da/d7n, an intrinsic property of the wave. The total momentum
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transferred, however, depends on the proper time spent by the electron at various points in the

wave, which depends on the initial conditions.

This dependence can be demonstrated, and an easily integrable form of the equation obtained,

by writing the ponderomotive term as

amcw® dadr am’cw” da
T Frdn " ey dr )
In the absence of fields other than those of the wave, the change in p4 over time is parallel to w®,
leaving the quantity ps°ws constant. Therefore we can simply integrate both sides with regard to
proper time and obtain an expression for the ponderomotive velocity. For example, if the electron

is initially at rest, then ps°w; has constant value mw, so that

2

a‘me
Pda=po+ '—4—‘;—‘0" (39)
and the drift velocity
. _p° _ _ac
TP T 14 (40)

which is the correct result.

In the presence of external fields, even weak ones, the product pdep is no longer constant,
with interesting consequences. In the absence of external fields, it is well known that the net effect
of the ponderomotive force over the pulse is just a displacement in the wave direction, but this no
longer holds if an external field changes the denominator. As a simple example, a weak magnetic
field combined with ponderomotive gradients can yield a significant change in energy, when neither
of these two forces acting independently can change the energy at all. The momentum transfer from
the ponderomotive force is largest when the momentum vector is parallel to k, so that particles can
be accelerated or decelerated in the wave direction by moving the momentum away from or toward

k during the body of the wave, respectively.

The ponderomotive terms in the above force equation can be derived from a potential
V = —mcyo, (41)

which is the negative of the phase-averaged energy of oscillation. The background field terms in

(37) are identical to those for an ordinary charged particle. Since the ponderomotive term is the
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derivative of a function depending only on space and time (through 7), the drift equations (37)
are Hamiltonian with H equal to the Hamiltonian for a charge in an electromagnetic field plus the
ponderomotive potential term explained above. The ponderomotive potential is time-dependent
and therefore the energy need not be conserved, even between times when the ponderomotive

potential is the same (e.g., before and after the wave passes).
VII. SUMMARY

For electromagnetic fields which are sufficiently weak and uniform in the rest frame of an
oscillating electron, the presence of the wave affects the motion through an increase in the effective
mass of the electron and through a ponderomotive force during periods when the wave amplitude
is changing. The equation (37) describes the particle’s motion under fairly general circumstances.
Something that can be seen directly in this representation is that weak, uniform fields cannot
induce significant energy transfer from a wave of constant amplitude to the electron or vice versa
(no “inverse bremsstrahlung”), although a high electron velocity may make weak fields effectively
many times stronger. Interaction between applied fields and the ponderomotive gradient of a wave
can lead to some energy transfer in either direction. The motion of an oscillating electron for
weak but not necessarily uniform fields is governed by the equations (13) for the drift velocity. We

therefore have a nearly complete picture of single-particle behavior in the weak-field regime.

The general behavior of oscillating electrons in strong background fields presents a more dif-
ficult mathematical challenge. Computer simulation suggests that there are certain regularities in
the motion, even for background magnetic fields strong enough to destroy the figure-eight motion.
Some types of fields seem likely to induce stochasticity, however, e.g., two plane waves at incommen-
surable frequencies. An investigation of the case of multiple intense plane waves has been carried

out by Rax!!, but the general problem of intense background fields remains uncharted territory.
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APPENDIX A: RELATION OF GUIDING-CENTER VELOCITY TO DRIFT VE-
LOCITY

Our current definition of the drift velocity has the advantage of simplicity but does not rep-
resent an actual change in displacement over time; instead it represents the average displacement
per time that would occur if the background fields were turned off. For some applications it might
be more useful to deal with a guiding center or “instantaneous center of oscillation,” defined as
some point along the particle’s orbit. For a figure-eight, we can conveniently define the center of
oscillation as the crossing point of the figure-eight in which the electron is instantaneously moving.
In other words, at any instant the electron is performing part of an oscillation in some drift frame,
and the instantaneous center of oscillation is some point on this oscillation. As an analogy, in slowly
varying magnetic fields electrons execute cyclotron orbits of varying radii, and it might be useful to
operate with the center of the cyclotron orbit in which a drifting electron is instantaneously moving.
The center of oscillation moves for two reasons: the drift frame where it is located translates at the
drift velocity v4, and the background fields change the amplitude and shape of the oscillation. To
first order, the amplitude of oscillation is altered with w and the shape is altered independently by
the effective change in the incident direction. Suppose x(n) is a parametrization of the oscillation
by the wave phase 7, with origin at the (arbitrarily chosen) center of the oscillation. Once again

eliminating terms of smaller orders, we obtain

___dxo’c = vy + d_xﬂ + g}.ﬁ
dt T dwdt ' dodt
(42)
g, dxede (G dve)
= VT Gw cdt cdt ) ° %

The last term on the right side of the above equation is bounded by A dvy/cdt, and integrating dt
gives that the contribution from this term is Avg/c, i.e., much smaller than a wavelength. Similarly
the second term is bounded by Advy/cdt, since = scales with 1/w if a is kept constant. Thus we
can treat vy as the change in displacement of the oscillation center over time, with total error much
smaller than a wavelength. One should keep in mind, though, that the effective wavelength of the

pulse viewed in the electron frame may be rather large for highly relativistic electrons.

APPENDIX B: CALCULATION OF PONDEROMOTIVE ACCELERATION
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The task is to integrate the differential equation for the drift velocity in the parallel direction
over a period, using the exact solution to the motion (5). The two terms in the equation for dv./dt,

averaged over a period, give

<i”1> _ 3_/”"‘“( 1 Opyda _ _l_ﬁal_zi_f_“) it
0

dt 2% " my 8adt my, O8a mydt (43)
-:’.E/"(__I_?ﬂ R TS TR
T 2xdn Jo my 8a my fa my
This integral takes a simple form when the exact solution (24) is substituted:
w da [?" (accos2n)/2 + ac(l — cos2n)/2 wda [* ac
w da / ( n)/ ( n)/ dn= 2 % " (44)
27 dn Jo YoY 2xdnJo 277

The only variable term in the integrand is 7, and 1/+ averages to 1/4,, as before. Therefore the

average ponderomotive acceleration is

<d—”f-> - daaaw (45)
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FIG. 1: Stationary oscillation in two frames. The right frame has velocity 0.5¢ in the
positive y direction, measured in the left frame. As a result the figure-eight is reduced in
size by a factor v = 0.86 and rotated by an angle 6 = 30°.




6¢

‘a8eIaaw olazuou sey £3100[3A JNq 0132 JNOQE SJB[[1280 UOIFRIIIVY "A}100[3A
aseyd e oy a8z 2A18 Jydiw jeyy juswadeldsip pue ‘Ajdopaa ‘(doj) woyelajady g 'HIJ

A
VUV




FIG. 3: “Cyclotron” motion of oscillating particles in uniform magnetic fields. In the first frame
Gapplied = 4.66 x 10~* (10 T). In next frame ayppiiea = 0.466; in last frame a,pplica = 4.66. The
strangely shaped orbit in the last frame is only repeated a few times before the motion changes
markedly. The figures are scaled approximately proportionally to the magnetic field strength.
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FIG. 4: Rectangles of points with similar dynamical variables. Three sample rectangles

are drawn in the picture.
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FIG. 5: Computer plot of gradient-B drift of oscillating electron in apatiﬁlly varying
magnetic field. The magnetic field varies linearly with scale length 100 A.
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