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Abstract

The guiding-center equations are derived for electrons in arbitrarily intense

laser fields also subject to external fields and ponderomotive forces. Exhibiting

the relativistic mass increase of the oscillating electrons, a simple frsme-invarisnt

equation is shown to govern the behavior of the electrons for sufnciently weak

background fields and ponderomotive forces. The parameter regime for which

such a formulation is valid is made precise, and some predictions of the equation

are checked by numerical simulation.
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I. INTRODUCTION

o

The increasing degree of interest in high-intensity lasers (a = eEo/mao ,_ i) motivates a

. theoretical examination of the behavior of electrons oscillating in the fields of such lasers. The

electron motion is well understood when the only forces present are those from the wave1; this

paper examines the motion of electrons when other fields are present in addition to the wave.

The nonlinearity parameter a can be understood as the ratio of the momentum imparted

by the wave field in a single oscillation to rnc. (For _ = 1 #m, a - 0.84 at an intensity of

I = cEo_/Slr = 10 Is W/cm2.) As a ,,_ i, the quiver velocity of an electron in the wave becomes

relativistic, and, as a result, the magnetic component of the wave begins to affect the motion.

Because the electron velocity is relativistic over much of the orbit, the electrons can exhibit an

increased "effective mass" or increased inertia to applied forces. While effective mass equations

do appear in the literature, there remains a need for a general and systematic derivation of such

equations, including precise statements concerning the limitations of such approximations. We

show here that the non-oscillatory part of the electron motion is given by a simple guiding-center

equation, which predicts some interesting results, verified here by numerical simulation.

The formulation developed here is useful in many situations of practical importance where

electromagnetic fields in addition to the wave field are present, and where these background fields

are much weaker than the wave field and vary only slightly over oscillation time and space scales. For

example, longitudinal electron oscillations in a plasma occur with characteristic time I/wp >> i/w

and space scale roughly the Debye length _D, which may be larger or smaller than the beam

wavelength. Plasma oscillations in the presence of laser pulses play key roles in the beat wave

accelerator2 and wakefieldaccelerator.3 Close-encountercollisionsinvolvingoscillatingelectrons

can occuron time and spacescalessmallerthan thoseof theoscillations,and in thiscasethe

enhanced-masspictureceasestobe valid,but a differentformoftheequationsderivedherecanbe
e

appliedtothiscaseaswell.

• Variousacceleratorschemes4-6attemptsome sortofconversionoftheintensetransversefields

of a laserintoa more usefulform,and constraintson when suchconversioncan occuraregiven

here.The generalconstraintsgivenhereconfirmand generalizetheconstraintfoundby ApoUonov
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et a/. 6 for a specific accelerator design, and also explain the optimal parameters Kawata et a/. found

numerically for two accelerator designs. 5-6 Essentially these accelerator designs convert some of

the relativistic quiver velocity into drift velocity, and this can only be done with certain types
e

of background fields. Powerful laser pulses in the presence of background fields may also have

applications as diagnostic tools in plasmas/

Electrons struck by a laser pulse experience a ponderomotive acceleration at the beginning of

the pulse that can result in a relativistic drift velocity (distinct from the quiver velocity) during

the body of the pulse. 8 It turns out that the ponderomotive acceleration appears naturally through

an analysis of these drift velocities. We derive a simple equation, (40), which governs the time-

averaged behavior of oscillating electrons in the presence of weak background fields and/or weak

ponderomotive gradients, for incident plane waves of arbitrary intensity. We show that, in some

ways, the character of the ponderomotive force in the presence of additional fields is changed. For

example, in the absence of background fields, the ponderomotive force, taken over the whole wave,

only displaces the particle and does not change its energy, while, in the presence of a background

electric or magnetic field, energy transfer from the ponderomotive force can take place.

It will be assumed throughout that the pulse has no transverse variation and has phase velocity

equal to the speed of light in rac_o. The small spot sizes required to achieve very high intensity

do create some transverse variation of _he pulse, but in many cases this variation is small over

a single electron's orbit. For vacuum applications the assumption that the phase speed is equal

to c clearly poses no problems, although in plasma applications the phase speed may vary. Often

plasmas irradiated by intense lasers are quite underdense, so that the deviation of the phase velocity

from c is small. Longitudinal variation of the pulse leads to the well-known ponderomotive effect,

which is considered here in some detail. Transverse variation of the pulse leads both to transverse

ponderomotive effects and to waveguide-like longitudinal fields; while these effects can be significant

and useful, as in ponderomotive focussing 9 and longitudinal acceleration 1°, in many applications

they are either small in magnitude or affect only a small fraction of the irradiated electrons. The

analysis is specific to the case of nearly monochromatic laser light, because in the nonlinear regime

the superposition of frequency components becomes very complicated 11.
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Some predictions of the analytical framework derived here are checked with a short computer

' code thatintegratesthe Lorentzforceequationsnumerically.The code isalsoused to examine

regimesbeyond thescopeoftheequationshere,in orderto understandqualitativelythe ch,_.nges
Q

intheelectronmotion.

In SectionIItheguiding-centerequationsarefoundby usingspecialfeaturesofthedriftso-

lutionsofelectromagneticwaves.SectionIIIdetailstheassumptionsleadingto theguiding-center

equationsand relatestheconditionsforitsvaliditytooptimaldesignsforcertainaccelerators•In

SectionIV,numericalexamplesareusedtoshow,when conditionsforitsvalidityarenotsatisfied,

the breakdownoftheguidingcenterequationsand thesubsequentinterestingdynamics.Section

V examinestheclassesoffieldsthatallowtheguiding-centerequationstobe averagedtoa simpler

form.SectionVI derivesguiding-centerequationsthatareframe-invariant,includingthepondero-

motiveforcein thepresenceofbackgroundfields•Our main resultsaresummarized in Section

VII.

II.DERIVATION OF GUIDING-CENTER EQUATIONS

To derivetheguidingcenterequations,we treata backgroundforceasa seriesofclosely-spaced

impulses.Between theimpulses,theelectronissubjectonlyto theintenseelectromagneticwave.

The sizeoftheimpulseisapproximatedastheintegratedforceovertheunperturbedtrajectoryof

theelectronintheintensewave in thetimeintervalbetweentheimpulses.Then theeffectofthe

backgroundforceisupdatedateachimpulse,and suchan approximationconvergesinthelimitof

infinitesimallyspacedimpulses.(ThisapproachissimilartothePicardmethod usedinthetheory

ofdifferentialequations12)Certainfeaturesofplanewavesmake itpossibletofindtheresponse

foralltimesfrom an arbitraryimpulse;then,ifitispossibletointegrateovertheappliedimpulses,

theelectrontrajectorycan be determined.The onlyapproximationsand constraintsenterat the

integrationstage.

• Thisapproachleadstotractableeqationsfortheproblemathand fortwo reasons:one,exact

analyticsolutionscan be writtenforelectronsinarbitrarilyintenseelectromagneticplanewaves13;

and,two,planewavesremainplanewavesinany frameofreference,sothattheexactsolutionsare
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applicableastheparticledrifts.These two propertiesofintenseplanewavescanbe usedtoderive

a simpleand accurateguiding-centerequationinthepresenceofexternalforces,aswe now show.

First,notethatthereareexactanalyticalsolutionsforthemotionofindividualelectronsin
)

a plane, monochromatic wave of any polarization (see e.g. Landau and Lifshitz 13 for the case of

linearly and circularly polarized waves; the case of elliptical polarization can be handled similarly).

IntegrabRity is a consequence of the existence of three integrals of the motion. 14 The canonical

momenta

= + eAIc.P.= p.+ A.Ic (i)

areconserved,becauseofthesystem'ssymme'.rywithregardtotranslationsperpendiculartothe

directionofthewave'spropagation.Here,p denotesthekinematicmomentum and P thecanonical

momentum, withthedirectionl_ofthewaveistakenalongthez-axis.Inaddition,thereisa third

invariantof themotion mc7 - Pz (here"yistheLorentzfactorofthe electron),associatedwith

the dependenceofthe problemon z and t onlythroughthe phaserI = a_(t- z/c). The exact

solutionsofthemotioncan be derivedfromthesethreeconstantsofthemotion.Inthepresenceof

backgroundfields,howeverweak,thesethreequantitiesarenot necessarilyconserved,raisingthe

questionofhow themotionismodified.

Second, note that a plane wave in one frame appears as a plane wave in all other frames,

though possibly with a different direction, frequency, and amplitude. Monochromatic waves remain

monochromatic, however, and polarization (i.e., eccentricity of polarization ellipse) is also invariant.

The norm of the vector potential, _/A#A _, which is just cEo/_ for a linearly polarized wave at a

crest is invariant, so that a strength parameter a can be invariantly defined by

mex/2(aA,)
{_-- C2 , (2)

withI)denotingan averagewithregardtophase.(Notethatsome otherauthorsdefinea without

thefactorof2.)Thus,givena driftvelocityv_ relativetothelabframeand a planemonochromatic

wave inthelabframe,thereexistsa solutionoftheequationsofmotionforwhichtheaveragevalue

oftheelectronvelocity,as calculatedinthe labframe,isv_. In theframemoving withvelocity

v_trelativetothelabframe,theelectronhaszeroaveragevelocity,and inthisframetheelectron's

pathisa circleforcircularlypolarizedlightand a figure-eightforlinearlypolarizedlight.13
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Actually,inour analysiswe willuse theinversetheorem:givenany instantaneousvelocityfor

' theelectronv, and thephase17ofthewave attheelectron'slocation,thereexistsa uniqueframe

moving with some velocityVd,differentfrom v,in which theelectronismoving in a stationary

figure-eightorbit.(Some subtletiesdo ariseinthedefinitionofthedriftvelocitywhen background

fieldsarepresent.The definitiontobe usedhereisthatthe driftvelocityisthe averagevelocity

thattheelectronwould haveifallbackgroundfieldswereinstantaneouslyeliminated.Forfurther

discussion,seeApp. A.)Thereareexplicitfunctionsp±(T})and pll(_7),dependingon thewave only

througha,thatspecifythecomponentsofthe electronmomentum perpendicularto and parallel

tothewave axisintherestframe(P.Lisa singlefunctionforlinearpolarizationand two functions

forcircularpolarization;the idesisthe same).The functionsp£ and P[larccalculatedexplicity

inLandau and Lifshitz.13In theuniquerestframeoftheelectron,thecomponentsoftheelectron

momentum parallelto and perpendicularto thewave axisarep_ and Pll"

At timeto,supposethattheelectronhaszerodriftvelocityintheframewhereour coordinates

aredefined.In thisframedefine_ parallelto I_,thewave axis.Afters smalltime stepdr,the

electronhaspositionand momentum givenby

x(t0 + at) = x(t0) + v(to)dt + O(dt2), p(t0 + dt) = p(to)+ F_dt + F_xt dt + O(dt2). (3)

Here Fw_ve and Fext are the forces on the electron from the wave and the background fields. After

this time step, the wave has some phase r/that is unchanged by frame switches (the product of

the wave and position four-vectors). Our task is to determine the drift velocity dVd of the frame

in which the electron would be at rest on average if the applied force Fe_t went to zero after the

time dr. We know that p(t0) + Fwave dt satisfies the equations of motion at phase r/in the original

frame, i.e., in the absence of the background fields this value for the momentum would be part of

an oscillation with zero average velocity in the original frame. In other words,

(4)
• p_(to)+ F_,_ydt = pli(17). ..

The importantfeatureofthefunctionsp± and PU isthattheydepend on E and w onlythrough

theratioE/_, whichisa Lorentzinvariant,asexplainedabove.
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Now consider the electron momentum in the frame moving with velocity dv relative to the

original frame. In this frame the electron has momentum components

P_ = Px - m_fdvx
(5)

I
p_ = py - m_/dv_,

where 7 is the Lorentz factor of the electron in the original frame. In the primed frame, however,

the z axis, which is parallel to the original z axis, is no longer parallel to the wave axis, because

the wave direction changes under Lorentz transformations. Assuming dt taken small enough that

Fext dt _ dv d _ c, (6)

the wave in the new frame is altered by a rotation through an angle dvu/c. This result (the

aberration of light) cam be derived either from the transformation of the electric and magnetic

fields or from the velocity addition formulas, treating the wave as a particle moving with the speed

of light. 15The frequency of the wave is also changed, so the amplitude of the oscillations is changed,

but the relationship between momentum mudphase depends only on a mud is hence preserved.

Fig. 1 shows the figure-eight motion from the same plane wave in two different frames, one

the lab frame (in which the wave travels in the z direction) and the other moving in the positive

tl direction with velocity 0.5c. The angle of rotation satisfies sin 0 = dryc, and (to first order in

dryc) cosO = 1. From this rotational effect,

, p'd_,_ f_d_,v
Pit"= P_ c = py - mdv_7 c "

Our goal is to choose dvx and dvu so that the electron is at rest on average in the frame moving

with velocity dv. In other words,

pll= pli(,7)
(s)

= p.(,7).

Combining equations (3), (4), (5), (7), and (8), and writing dp for Fextdt, we obtain

Pll(r/) + dpx - m7 dvx - mp±(_7) dv_ = Pll(_?)C

p± (77)-t-dp_ - m7 dvu -t- mPll(17)dvu _ p± (17). (9)
C
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In these equations we have dropped terms of order d_ 2/c 2, since these terms make no contribution

• in the limit dt --, 0. Related terms will return, however, when we attempt to sum the infinitesimal

impulses from the background field• Solving the above equations, we obtain

d_ dp_ p_dp_ d_ = cdp_ (10)

We can simplify these equations slightly by noting that -y- Pll(_)/mc is a constant (called "yby

Landau and Lifshitz, henceforth "Y0)with value _/1 + a2/2, where a is the strength parameter of

the wave defined above. The phase-averaged (not time-averaged) relativistic mass of an oscillating

electron is "y0,and the reciprocal of the time average of the reciprocal of 7 for an oscillation is also

"Y0.This important relationship foUows from the third invariant of the unperturbed motion:

Pll _ 70 _ _o Pll _ll dyl-- -- = I = I-- =- (ii)
7- mc 7 m_ c dr"

Therefore averaging 1/-y with regard to time is equivalent to averaging 1/-y0 (a constant) with regard

to r/. For circular polarization Pll is zero and 7 - _0. For linear polarization, the time average of

Pll is nonzero in the rest frame, where vii averages to zero; this occurs because the variation of "yis

correlated with that of PlI"The statement that the electron has zero average momentum in the rest

frame is thus not strictly correct; the rest frame should be defined as the frame with zero average

velocity, in cases where the two are not identical. The calculations for the z direction are the same

as those for the y direction, so finally we obtain

dry = dp_ dv_ dp_ dv_ dp= p_ dp_ p_dp_ (12)

writingp_ and Pzforthetwotransversecomponentsoftheexactsolutionforthemomentum (which

areequalto theI/and z momenta intheoriginalframeneglectingtheexternalforce,or tothe l/

and z momenta inthenew frame ifwe takeintoaccounttherotationrequiredby theaberration

oflight).

The equations(12)holdforarbitraxypolarizationand forany wave causingperiodicmotion.

• The equationsand theapproximationusedtoderivethem axeaccurateforaxbitrarya;however,in

deriviugthem we made theassumptionthatthetotalvelocitygainfromtheimpulsewas much less

than c.The form givenaboveisusefulforcollisionsand othershort-time-scalebehaviors,but we
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can extend it without great difficulty if we retain the assumption that the total momentum supplied

by the external forces is insufficient to make the drift velocity relativistic (the quiver velocity, of

course, remains arbitrarily relativistic). Note that the velocity gains are separately linear in each

of the comPonents of the applied force.

There are three effects of order _d/C smaller than the leading velocity gain we wish to calculate.

Including these effects complicates the equations sufficiently that numerical solution seems to be

the only means of future progress. Velocity gains from a continuous series of impulses Can be added

simply (i.e., linearly) if we know that the sum of the magnitudes of the velocities is much less than

c, but relativistic addition of velocities introduces second-order terms that become comparable as

Vd nears c. As described above, the perceived change in the wave's direction of incidence has the

effect of a rotation of coordinates. This rotation means that the wave's direction of incidence in

the drift frame is no longer parallel to z, but the error arising from ignoring this rotation is of

order Vd/C smaller than the result of the first-order calculation (since the rotation angle scales as

Vd/C). Finally, the background electric and magnetic fields in the drift frame differ from those

in the original frame by a factor of order Vd/C. The assumption that the drift velocity remains

non-relativistic under small perturbations is justified by the impulsive equations above. Ignoring

these three corrections, we obtain the differential equations for the drift velocity

dv____y= _Fy d___iz= F= d.____== F= F_u_ F,uz (13)
dt inTO' dt _r_7o' dz _n7 reCTO reCTo

where z/v and uz represent the quiver velocity in the !/and z directions rather than the drift velocity.

For many background fields the differential equations can effectively be averaged over a period

to give the resulting drift acceleration. For example, for a uniform electric field E along _ we obtain

that the drift velocity after one period is just eE/mTow (which only approaches c for E _ 101°

V/cm) along :_. For sufficiently weak and uniform fields, however, it will be shown that the second

and third terms in the v_ equation vanish and the 7 in the first term can be averaged to 7o. In

this case the equation becomes simply

dv__! = F (14)
dt into"
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Equation (13) and the equation for the drift motion (14) are a major result of this paper; we

" now turn to the conditions of applicability of these equations and the errors caused by the use of

the averaged motion (Section III), the extension of these equations to various types of background

fields (Sections IV and V), and generalization of these equations to the case where the wave fields

are changing in time (Section VI). Section VI also contains a frame-invariant version of the guiding-

center equation.

The impulse equations contain an interesting asymmetry between the x response and the y

response, in that any impulse acting in the y direction accelerates the electron as if it had mass

roT0, rather than roT, the effective mass in the x direction. The effect of dp_ on the x motion

is also surprising. These two effects are observed in a single-particle numerical simulation of the

impulse problem. For uniform fields the _ymmetry between x and y disappears. However, it is this

asymmetry that explains the ponderomotive acceleration along the wave axis, which is examined

in detail in Section VI.

III. CONSTRAINTS ON THE GUIDING-CENTER DESCRIPTION

This section examines the conditions under which (13) is valid, and the foUowing two sections

look at the conditions under which equation (13) can be averaged to (14). As we show, there

are a number of subtleties in the use of these equations. First, note that the use of the averaged

acceleration in place of the actual acceleration introduces an error, as in the following example. For

an electric field along y, the drift velocity in the y direction after a period is eE/mTow, and the

drift velocity in the x direction is

fp -eEuudt (15)eriod YnL_0

This integral is zero _o our current level of approximation, so that there is no velocity gain over

a period in the x direction. However, the integral of the drift velocity over a period ("the drift

• displacement") can be nonzero, depending on when the period is taken to begin, since the electron

may gain drift velocity in one direction and then lose it, resulting in zero net velocity gain but

in some position gain. Fig. 2 shows the acceleration, velocity, and displacement graphs in the x
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direction for an applied field along y that is turned on instantly at one point in the oscillation. We

have

mc'/0 reCTo

where 1/(0) is chosen to be 0 and 1/(t) represents the electron's displacement within its figure.eight

orbit rather than relative to the lab. If, say, at time 0 the electron is at its highest 1/displacement,

then for all times the velocity in the z direction wiU be in the direction eE, although this velocity

is periodic in the same way as 1/(t). Using the equation given below for the function 1/(t), the

integration gives an average velocity in the z direction of magnitude

2eEymax 2a2c E
= = . (i7)2 Eo

This is one example of a systematic error resulting from the use of the average acceleration

as an actual acceleration. In effect, information about the initial phase of the electron is lost in

the transition to averaged "guiding-center" equations. The use of the averaged acceleration as

the actual acceleration necessarily gives the correct final velocity, taken over an integral (or very

large) number of periods; the final displacement may be inaccurate, as in the example given above.

Often this "phase velocity" is of little interest, for two reasons. The first is that often the resulting

velocity is less than the change in the drift velocity over a single period; since the drift velocity

accumulates over many periods while the phase velocity does not, the drift velocity over practical

times is much larger. As an example, consider the case with a 1_ 1 and an applied electric field in

the _/direction. Then
4cE _'2wctE

E0

and aftera few periodsv_ ismuch largerthan v=. This argument does not holdforthe case

of a uniformmagneticfieldor otherfieldwhich producesno driftaccelerationaveragedovera

period;in thissituationthe phasevelocitycan dominate.The otherreasonthe phasevelocity

can typicallybe neglectedisthatinpracticeeithertheappliedfieldor thewave fieldisturned

on overmany oscillations.Ifthe riseofthe wave or electricfieldisuncorrelatedwith thewave

frequency,thentheeffectofthephasevelocitybecomesmuch smaller.Thishappensforthesame

reasonthata smooth wave packet(i.e.,one whichiseffectivelylinearovera period)tendsnot to
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produce a significant displacement in the transverse direction: because the _cceleration oscillations

• axe changing in a_npUtude, the velocity changes sign ai'ter e_ch period and osci11&tes with roughly

zero average. As an example, note that

I/0 ) °a sin t' dr' = (a - a cos t) = -2

so that the phase velocity is nonzero, while for a Une_rly rising wave paget

(f0' t' sin t' dt') -- (sint - t cost) ~ O. (20)

The average of t cos t is effectively zero, in that it remains bounded while the wave amplitude grows

without bound.

Averaged over all initia] phases, the phase velocity vanishes, for otherwise it would contribute

to the acceleration. This can be shown as follows: if a(t) is the acceleration producing the phase

velocity st time t, define a function _(t) by

I'_(t)- .(_)dt. (21)

Because the average of a(t) is zero, v(t) must be a periodic function with period 2_r/w. Then for

the averaged phase velocity we have

/2_/_ f'°+2_'/w ft'{_,)= (_) 2 dto dt _Ct)_t'JO ./to o

_l' f'"" f,o.,.,.= d_o (',,(t)-,vCto))dt
JO ./to (22)

=c_)_f_''"_,of,o+_.,.,,c,)_,-_"f_"'_o_,o)_,oJO Jfo

- v(to)dto= 0
_ -- _(t)d_-_ _o2x Jo

where in the next-to-last step we have used the periodicity of _.

The use of the averaged acceleration eliminates many of the terms in the equations for the drift

' motion,and theremainingtermscloselyresemblethosefora non-oscillatingelectronwithincreased

mass,as willbe shown below.Ifthevelocitygainedby an electronissmallovera singleperiod,

we candescribethebehavioroftheelectronovermany periodsby usingtheaccelerationaveraged

11
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over a period as the electron's acceleration, and then treating this acceleration relativisticMly; this

method will give the correct answer as long as the velocity gain over a period remains small, and

wRl continue to describe the motion correctly as the aggregate drift velocity becomes relativistic.

In some cases the secondary terms in _z do not vamsh and make a necessary contribution, as in the

case of a ponderomotive force associated with the growth in intensity of the original wave, which

will be examined below. It will be shown that for many types of background fields, the electron

motion is given to a high degree of approximation by a simple equation that effectively sums the

contributions from the background fields and the wave's ponderomotive force.

One condition already mentioned that must be satisfied for the drift equations to be valid

is that the drift velocity gain induced by an external field over a single period of the wave be

nonrelat]vistic. If the drift velocity gain is relativistic, then the simple addition of velocities breaks

down and transfer of energy from the wave to the electron or vice versa is possible. In more precise

language, the addition is legM, and the motion described by the equations (13), if in the frame

where the electron has no drift velocity the applied fields satisfy

aapplied e_applied _applied
= mc.wwave= Ecrit _::i. (23)

Here eEcrit= mcWwave. (Bsppliedcan be substitutedfor_applied in the above).Note thatthis

constrainthas nothingto do with the strengthofthe wave,and thewave can be weaker than

theappliedfield,ms longas the appliedfieldissufficientlyweak_ Strongbackgroundfieldsaxe

numericallyobservedtoproduceverycomplicatedmotions,althoughcertainregularitiesseem to

existinsome cases.

As an exampleoftheimportanceofthisconstraint,considertheacceleratorschemeofKawata

etal.s,wherebya transversestaticelectricfieldisusedto convertwave energyintoparticleenergy.

The constraintmust be violatedtoproducesignificantenergytransfer.In thelabframethestatic

electricfieldhasEapplied/Ecrit = 2.18X 10-5,Intheframeoftheelectron,however(whichhasinita]

velocity 0.9999c), Wwaveand Erd are decreased by a factor 27 ",, 141, and Eapplie d ifl increased by a

factor of 7. Thus in the electron's frame Eapplied/Ecrit _' 0.212, and the absorption of wave energy

by the electron does not contradict the above results. The results of our numericM simulation for

these parameters match those in this paper. In another paper6 Kawata et al. use a magnetic field
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with a&pplied = 0.0057 in the lab frame and initial 7 of 3.2, so that 272alab = adrift = 0.117. In

• fact, the correct 7 to use in calculating adrift should include the ponderomotive increase in the

electron drift velocity, which will be discussed in greater detail below; the actual adrift v'41ues for

the two methods described above are 0.243 and 0.133. In another acceleration method, that of

Apollonov et al.4, the prescribed initial 7 is equal to (wmc/2eB) 1/2, which is exactly our condition

that 27_B _ Ec,it.

If an applied electric field is weak, then according to the above equations the drift acceleration

of the particle can never be more than twice as large as the acceleration of a stationary electron in

the same field ("twice" because of the additional terms in the z equation) and will typically be less

because of the increase in effective mass. A weak applied magnetic field that is highly nonuniform

over a figure-eight can lead to significant acceleration, and this case is considered below. For

simplicity, the rest of the results in this paper will be specific to the case of linear polarization

- unless otherwise noted. The generalization to other polarizations is in most cases straightforward.

IV. SIMPLE APPLICATIONS OF THE EQUATION

Some results regarding simple types of background fields can be easily determined from the

equations above. For simplicity, these results will be derived for the case of linear polarization;

in most cases the treatment for arbitrary polarization is similar, although the results may differ.

The unperturbed equations of motion in the rest frame of the electron, for the vector potential

A = A u - -amc 2 sin(r/)/e, area2

a2c sin 2_7 ac cos ,/
z= 87o2w ' Y= _''7oW z=O,

a2me cos 2r/
Px = Pl[ = , Pu = P± = -arnc sin r/, Pz = 0. (24)

47o

• As described above, the drift induced by a uniform electric field is in the direction of the

electric field, and the electron's effective mass is rnT0. For a uniform magnetic field, the equations

' of motion (13) give the integrals

Avy= / -eu=BZdt, Av= = / e(uzBY - uuBx) dt, Av== / . -eu_Bz Uudt. (25)reCTo rncTo mc'7 TnToc c
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Since f r_ dt - 0 for each index i, the first two integrals are zero. The z integral is also zero, as

can be verified by direct computation or by use of some symmetries of the figure-eight motion that

wUl be described below. As a result, a uniform magnetic field in the rest frame of the electron has i

no effect to first order in the strength of the magnetic field. For large magnetic fields the motion

ceases to oscillate in an orderly manner.

This result can be used to explain the behavior of drifting figure-eight orbits in a uniform

magnetic field. Suppose for example that a laser pulse induces (through the ponderomotive force)

a drift velocity relative to the lab frame. During the body of the pulse, figure-eights moving with

this drift velocity then move in cyclotron orbits in the presence of weak magnetic fields. In order

to get these effects from the equations above, we begin by transforming the magnetic field from

the lab frame to the electron's drift frame. The equations below are written for the case v_ .i. B;

a parallel component of vd merely makes the motion helical rather than circular. The fields in the

drift frame are then E = 7dv_/c x B and B = "ydB. Here ")'dis the Lorentz factor of the drift

motion. The drift velocity of the figure-eight in the lab frame can be arbitrarily large without

causing difficulties l'or the method described above, as long as the change in drift velocity over

a period is nonrelativistic. In this moving frame, then, the electron experiences an acceleration

perpendicular to the direction of its drift velocity with magnitude eT_vdB/mc'y o. The assumption

that the fields are efl'ective_y constant over a period in the drift frame requires that wc _ Wwave,

but this criterion is difficult to violate for wavelengths of interest. Essentially the criterion states

that the fields in the electron's drift frame change slowly over a period of the wave. Transforming

a perpendicular acceleration introduces two time dilation factors of 7_, so that in the lab frame

the electron experiences an acceleration evdB/mc',/o'yd. Hence the modified Larmor frequency wc

is eB/rnC_o'yd, and this result is observed numerically.

The multiplication of Lorentz factors in the denominator of the previous expression can be

understood by viewing the oscillating electron as a "quasiparticle" of mass re'yD. The transforma-

tions to and from the drift frame in the above calculation can be generalized simply by noting that

a particle whose displacement satisfies the Lorentz equation of motion in one frame is constrained

to obey it in all frames. Thus we have the general result that, for fields which in the rest frame
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of the electron vary slowly over the single-oscillation time and space scales and which do not in-

' duce relativist_c velocities over • period of the wave, the electron behaves like a quasiparticle of

enhanced mass m70. This enhanced mass, and its effect on the plasma frequency, has appeared in

the literature before, for example in studies of focussing of laser beams by plssmasle; the complete

derivation here of the enhanced mass and the conditions for its applicability, however, appear to

be new. The methods described here can also be applied for weak fields which are not uniform in

space or time, as in the following examples.

Although figure-eights make closed cyclotron orbits to first order, this analysis cannot rule out

a velocity change of order 2(dvperiod/C) per oscillation or (c0/wc)(dv2erlod/C) per cyclotron orbit. For

sufficiently strong magnetic fields, even electrons with zero inital drift velocity are strongly affected,

and the orbits no longer resemble cyclotron motion. Fig. 3 shows the progressive breakdown of the

cyclotron motion; it is interesting that the motion retains some regularities even for applied fields

of very high strength. When the electron has zero drift velocity in a constant magnetic field, to first

order the magnetic field causes no acceleration and the higher-order terms dominate. The methods

given in this paper calculate what in most circumstances is the dominant part in the motion; in

certain special cases the part calculated here goes to zero and other less easily determined behaviors

become evident. The simplest, most important such case is that of a static uniform field which in

the electron rest frame is purely magnetic.

V. MOTION IN NONUNIFORM FIELDS

This sectionextendsthe conditionsunder whichthe asymmetry in theguiding-centerequa-

tiondisappearsupon averaging.The resultsobtainedin thissectionwilldepend on the linear

polarizationoftheincidentwave;theeffectsofvaryingfieldson oscillationsin circularlyand eUip-

ticallypolarizedwavesaremuch different.The primaryresultisthat,forlinearpolarization,fields

. whichvarylinearlyallowthe averagingofequation(13),eveniithefieldsvary significantlyover
I

a figure-eightlengthscale.Hence theguiding-centerequationsareapplicablefora widerclassof

backgroundfieldsifthewave islinearlypolarized.
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A uniform magnetic field causes no change in the drift velocity over a period, as shown in the

previous section. In the presence of a spatially varying magnetic field, we expect a drift acceleration

of order

e_o.c,_VB
Ggrad "- , (26)

W_C

where _ is used as an estimate of the figure-eight excursion distance. If the electron is moving with

velocity Vdrelative to the frame where the field is purely magnetic, the magnetic field (ignoring the

gradient) induces an acceleration in the drift frame of magnitude

e_drift _fdrift _ (27)adrif t --
W_C

Compar!ng the two, we get
VB 1)drif t

Gsr&d _ adrift ::_ T _ _ _" (28)_osc

Depending on the size of 1)drif t and the degree to which the magnetic field varies over ),, the

gradient may induce effects less than, comparable to, or larger than the effect of the field without

the gradient. Because Vo,c can be relativistic while _drift iS small, even for fields varying by a few

percent on the oscillation scale the gradient term can be larger than the static term. For the case

of circular or elliptical polarization, these estimates are substantially correct: fields varying slightly

on the oscillation scale can invalidate the guiding-center picture and yield energy transfer from the

wave to the particle. For Hnear polarization, however, Hnearly varying felds end up causing a much

smaller change in the acceleration. Magnetic fields are of primary interest because a gradient in

an applied electric field changes the acceleration by at most a factor of VE/E, so that the effect is

small unless the electric field changes on a scale length less than or equal to a period.

The figure-eight motion in a linearly polarized wave has certain symmetries, and these symme-

tries greatly simplify the calculation of drift motions. Looking at the equations (24) we see that Px

has the same value at _7- 0, r/= _ - 0, r/- _r+ 0,17 - 2_r- 0 for any angle 0. Similarly p_ has the

same value at r/- 0 and r/- lr- 0, and the negative of this value at _7- _r+ 0 and r/-- 2_r- 0. Since

the Lorentz factor -y is equal to _/1 + (px/mc) _ + (py/mc) 2, we also have that 7 takes on the same

value at the four phase angles. These results are significant because the positions at the four phase

angles in question form a rectangle, and for linear field gradients the sum of the field at the four
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vertices of a rectangle takes a particularly simple form. The four phase angles 0, lr - 0, w + 0, 21r- 0

, correspond to the top left, bottom right, bottom left, and top left corners of the rectangle, as drawn

in Fig. 4. These facts are summarized in the following table:

Phase Pz P_ "Y

e + + +
_r-e + + +
•"+8 + - +

21r- 0 + - +
....

In calculating the acceleration induced by an electric field, we obtain four integrals over the

period of the motion, which can be done explicitly using (24). Two of these integrals are propor-

tional to f E(x)dr, one is proportional to f Ez(x)/'y dr, and one is proportional to f E_(x)v_ dr.

In the case of the first two types, the part of the integrsnd not depending on E takes on the same

value at each of the four points on the rectangles described above. The original integrals are over

time rather than phase, but they can be converted easily, noting that drdr l depends only on _x

and hence has the same value at the vertices of one of the rectangles constructed above. If the

electric field varies linearly with position, the value of E, averaged over these four points, is equal

to its value at the center. Therefore each of these integrals gives the same answer as if E were

constant, with value equal to the value of the actual electric field at the figure-eight origin. In the

last integral, however, the integrand takes on different values at the vertices of the rectangle: it

takes on one value at the top left end bottom right corners, and the negative of this value at the

other pair of opposite corners. As a result, for a linearly varying electric field, this last integral has

value zero, the same value as it has for any constant electric field. Therefore, for a weak, linearly

varying electric field, the acceleration over a period is the same as that of a particle of mass re'y0

and charge e in a constant field with magnitude equal to the magnitude of the actual field at the

origin. The only interaction between the figure-eight and the field gradient occurs through the drift

velocity.

The magnetic field case is only slightly more complicated; now the integrsnds contain magnetic

' field terms multiplied by v_, v_/7, and v_vy. (Once again an additional factor of dt/d_7 enters that

does not affect the calculation) The second two integrands thus average to zero for linearly varying

fields, and the first gives the same effect as that of a uniform magnetic field with value at the origin
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equal to the value of the original field at the origin. Integrating v= over a period (for a uniform

magnetic field) gives zero, however, so that magnetic gradients have no effect. The gradients

affect the motion only through the drift velocity, therefore, so that figure-eights in linearly varying

magnetic fields should exhibit B x VB drifts similar to those of electrons not in waves. This

behavior is observed numerically (Fig. 5): oscillating electrons in a linearly varying magnetic field

drift with velocity

m_2_f0_'drift VB (29)vg = 2eB --if'"

The above calculation only considers the interaction of the figure-eight motion with the mag-

netic field (because the integration was performed over the unperturbed motion); as the drift

velocity of the particle increases over a period, the position of the particle measured in the original

drift frame no longer lies exactly on the original figure-eight. This effect is smaller by a factor

AVd/Vquiver than the term calculated above, and can only be comparable to the acceleration in-

duced by a static field of equal magnitude if AvdVB/w ,,_VdB, i.e., the electron is stationary or

the scale length is less than a wavelength. It should be pointed out that a spatially varying field in

the lab frame may vary in time as well as space in the electron's drift frame, and that even linear

time variation can cause an additional acceleration. This acceleration is purely pha_e-dependent,

however, and therefore has a negligible effect unless the electron's drift velocity changes greatly

within a period.

For magnetic fields which are weak but vary nonlinearly on the figure-eight scale, there can be

significant uptake of energy by the electron (i.e., transfer of oscillation energy to drift energy). The

simplest example is a field which is nonzero for only a emaJl part of the orbit; then the figure-eight

feels a large drift acceleration over this portion of the oscillation.

VI. PONDEROMOTIVE FORCE IN PRESENCE OF EXTERNAL FIELDS

To this point the analysis has been specific to the case of plane waves of constant amplitude.

Waves of varying amplitude (e.g., pulses) generate the well-known ponderomotive force in the

direction of motion. The ponderomotive force in the absence of background fields can be easily

derived from the three invariants of the motion. We present a calculation of the ponderomotive

force using a variation of the frame-transformation method applied above to demonstrate that
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the ponderomotive force is unchanged when background fields are present, under a suitable set

" of assumptions. We then derive a covariant equation of motion that describes the behavior of an

electron in an arbitrarily intense but "smooth" pulse, in the presence of weak background fields. The

ponderomotive force results from a time-dependent scalar potential that happens to be conservative

in the absence of externa/fields, i.e., after the wave has passed the electron has its initial energy.

An important consequence of these equations is that energy can be transferred to an electron by

the ponderomotive force if background fields are present.

The ponderomotive force derives from a change in the functions P[l and p± over time, resulting

from the change in the wave aznplitude a over time. We use a to denote the envelope amplitude,

rather than the instantaneous aznplitude. Writing Ap for the change in rest-frsxne momentum

resulting from the change in the wave amplitude, our goal is to find the velocity dr of the frame in

which the electron has para//el momentum P[I+ AP[i and perpendicular momentum p± -k Ap±. By

the same steps that led to (9), but with no external force and the momentum in the primed frame

altered by Ap,

Pll m dvx7 p± dvu- PII+ AP[I p± m d%7 + Pll dvu- , - - p± + Ap±. (30)
C C

Therefore the effect of an amplitude change is equivalent in our formalism to a force of -dPll/dt

in the z direction and -dp±/dt in the 1/ direction (the negative signs appear because the force

terms are on the left in (9)). The derivatives with respect to time should reflect only the change

in wave amplitude, i.e., -dPu/dt should be properly written (-_pll/aa)(da/dt), and similarly for

the l/direction. Since the ponderomotive force enters just as any other force, and the equations for

the drift velocity are linear in the applied force, it follows that the ponderomotive force does not

interact (for short times) with any other force that may be present if both are sufficiently weak.

This r_sult is nontrivial because the ponderomotive "force" is ordinarily derived from the three

constantsofthemotionintheunperturbedcase;sincetheseconstantsarenotpreserved,thereis

. no guaranteethattheponderomotiveforceshouldtakea similarform.We haveagaintheequations

ofmotion

dv___X_ -_ F_ dv__..£_ F_ F_uy (31)
dt into ' dz m7 into '
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The ponderomotive velocity reached as a wave rises depends only on the final amplitude of the wave

and the final value of the vector potential, but this simplicity is obscured in the above equations,

in that the ponderomotive force can come from any of the three terms in the equation above.

We will concentrate on the case when the wave rises slowly, i.e., over many periods and at an

approximately constant rate over each period; in this case the y equation is zero on average, so

that the ponderomotive force is directed along the wave axis. The averaging of the z equation over

a period, using the explicit equations (24) for the figure-e_ght motion, is not difficult (both terms

contribute, however; see Appendix A) and yields for the average acceleration

I d_ l ae._ da (32)-_- - 2"y02d_"

This equation is in the rest frame of the electron, but note that da/d_ is invariant, as both a and

17are relativistic invariants. Integration of this equation in its present form is difficult, since the

(possibly relativistic) velocity of the rest frame complicates addition of velocities. Later we will

show that the equations can be written in an easily integrable form in the absence of external fields.

We thus have an expression for the ponderomotive force in the frame where the electron has

no drift velocity, as well as our previous expression for the behavior of the drift velocity in the

presence of certain types of background fields. That is, in the drift frame we have

dvd amc_k da (33)
m'y0--_-=e(E+VdXB)+ 270 dr/"

These equations can be made frame-independent without great difficulty and take a more intuitive

form. First we note that by forming the number 7d defined as 1/V/1- Vd2/C2, the vector _'d =

(7d, VdVd/C) is a four-vector. This four-vector represents the time-averaged four-velocity if all

background forces and ponderomotive effects va_shed; this vanishing is a frame-invaxiant concept,

and the average of a four-vector along a path in spacetime parametrized by a quantity transforming

linearly (in this case the time) is a four-vector. This four-vector has constant length 1, clearly. The

equation (33) generalizes naturally to

rnTo---_rdvdC'= eF_vd _ + (ponderomotive term). (34)
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Here F_ is the electromagnetic field tensor. For the ponderomotive term, we need a four-vector

. which is parallel to the vector (0,[¢) when Vd is equal to (1,0,0,0). The ponderomotive four-

vector must also be orthogonal to Ud, since Vd has constant length (this condition is satisfied for

the electromagnetic term by the skew-symmetry of F). The simplest four-vector satisfying these

conditions is proportional to w_--Vd _(W_Vdg) where w = (_, wit) is the wave four-vector. In order to

make our equation look more like a force equation, introduce the four-vector Pd defined as meY0Vd

(the time-averaged momentum four-vector, if all background fields disappear). By the chain rule

dpd a a d'?o dl/d_ (35)
dr - _CPd -_T "_ _ftC'YO-_T "

The second term is given by (34); the first is

d'fo tlWICVda(tOl_I/d[_) da (36)
rrtcvd_"d_r = 2?0 dr/"

This term cancels part of the first term, since

(OJ a -- Vda(_l_ l/d/_ ) ) "1"btda(OJ/3 Pd_ ) -- Oj a.

We axe left with

__ amcw a da
dpda = eF;vd [3-t" (37),

d_" 270 dr/

which is a major result of this paper.

Because the ponderometive term is paxallel to _, the momentum transfer from the pondero-

motive effect is equal to that from a number of photon absorptions. McDonald 17 derives similar

results in the absence of background fields starting from this assumption, which is valid only in the

case of a slowly rising wave. It is important to note that the conditions for applicability of this

equation are frame-dependent: the fields must be weak and approximately uniform in the electron

rest frame. We see that the momentum transfer per proper time varies between frames in the same

way as w _, consistent with the photon picture: the number of absorptions is naturally invariant

• (a count of distinct spacetime events is preserved), but the characteristics of the photons absorbed

change with w _. The rate at which momentum is instantaneously transferred to or from the wave

depends only on the derivative da/dr/, an intrinsic property of the wave. The total momentum
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transferred, however, depends on the proper time spent by the electron at various points in the

wave, which depends on the initial conditions.

This dependence can be demonstrated, and an easUy integrable form of the equation obtained,

by writing the ponderomotive term as

amc_ ada d_" am2cw a da
-- = (3s)

2"/0 dr d_ 2pd/3W_ d'r"

In the absence of fields other than those of the wave, the change in Pd over time is parallel to w a,

leaving the quantity pd/3W_ constant. Therefore we can simply integrate both sides with regard to

proper time and obtain an expression for the ponderomotive velocity. For example, if the electron

is initially at rest, then pd/3W/j has constant value row, so that

(121%C

Pd "- Po-F _w a (39)

and the drift velocity

f a2c (40)
VdX-- _ -- a2 + 4

which is the correct result.

In the presence of external fields, even weak ones, the product pd/3W_ iS no longer constant,

with interesting consequences. In the absence of external fields, it is well known that the net effect

of the ponderomotive force over the pulse is just a displacement in the wave direction, but this no

longer holds if an external field changes the denominator. As a simple example, a weak magnetic

field combined with ponderomotive gradients can yield a significant change in energy, when neither

of these two forces acting independently can change the energy at all. The momentum transfer from

the ponderomotive force is largest when the momentum vector is parallel to 1<,so that particles can

be accelerated or decelerated in the wave direction by moving the momentum away from or toward

!<during the body of the wave, respectively.

The ponderomotive terms in the above force equation can be derived from a potential

Y = -_nc2"y0, (41)
q

which is the negative of the phase-averaged energy of oscillation. The background field terms in

(37) are identical to those for an ordinary charged particle. Since the ponderomotive term is the
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derivative of a function dePending only on space and time (through _), the drift equations (37)

• are HamUtonian with H equal to the Hamiltonian for a charge in an electromagnetic field plus the

ponderomotive potential term explained above. The ponderomotive potential is time-dependent

and therefore the energy need not be conserved, even between times when the ponderomotive

potential is the same (e.g., before and after the wave passes).

VII. SUMMARY

For electromagnetic fields which are sufficiently weak and uniform in the rest frame of an

oscillating electron, the presence of the wave affects the motion through an increase in the effective

mass of the electron and through a ponderomotive force during periods when the wave amplitude

is changing. The equation (37) describes the particle's motion under fairly general circumstances.

Something that can be seen directly in this representation is that weak, uniform fields cannot

induce significant energy transfer from a wave of constant amplitude to the electron or vice versa

(no "inverse bremsstrahlung"), although s high electron velocity may make weak fields effectively

many times stronger. Interaction between applied fields and the ponderomotive gradient of a wave

can lead to some energy transfer in either direction. The motion of an oscillating electron for

weak but not necessarily uniform fields is governed by the equations (13) for the drift velocity. We

therefore have a nearly complete picture of single-particle behavior in the weak-field regime.

The general behavior of oscillating electrons in strong background fields presents a more dif-

ficult mathematical challenge. Computer simulation suggests that there are certain regularities in

the motion, even for background magnetic fields strong enough to destroy the figure-eight motion.

Some types of fields seem likely to induce stochasticity, however, e.g., two plane waves at incommen-

surable frequencies. An investigation of the case of multiple intense plane waves has been carried

out by R_ I] , but the general problem of intense background fields remains uncharted territory.
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APPENDIX A: RELATION OF GUIDING-CENTER VELOCITY TO DRIFT VE-

LOCITY

Our current definition of the drift velocity has the advantage of simplicity but does not rep-

resent an actual change in displacement over time; instead it represents the average displacement

per time that would occur if the background fields were turned off. For some applications it might

be more useful to deal with a guiding center or "instantaneous center of oscillation," defined as

some point along the particle's orbit. For a figure-eight, we can conveniently define ihe center of

oscillation as the crossing point of the figure-eight in which the electron is instantaneously moving•

In other words, at any instant the electron is performing part of an oscKlation in some drift frame,

and the instantaneous center of oscillation is some point on this oscillation. As an analogy, in slowly

varying magnetic fields electrons execute cyclotron orbits of varying radii, and it might be useful to

operate with the center of the cyclotron orbit in which a drifting electron is instantaneously moving.

The center of oscillation moves for two reasons: the drift frmme where it is located translates at the

drift velocity Vd, and the background fields change the amplitude and shape of the oscillation. To

first order, the amplitude of oscillation is altered with w and the shape is altered independently by

the effective change in the incident direction. Suppose x(T/) is a parametrization of the oscillation

by the wave phase 17,with origin at the (arbitrarily chosen) center of the oscillation. Once again

eliminating terms of smaller orders, we obtain

dxosc dx dw dx dO

dw dt dO dt (42)

(dx wdvx f_ x x x.
= Vd d_ cdt _-_]

The lastterm on therightsideoftheaboveequationisbounded by A dvd/cdr,and integratingdt

givesthatthecontributionfromthistermisAVd/C,i.e.,much smallerthana wavelength.Simihxly

thesecondterm isbounded by A dvd/cdr,sincex scaieswithi/w ifa iskeptconstant.Thus we

cantreatVd asthechangeindisplacementoftheoscillationcenterovertime,withtotalerrormuch

smallerthana wavelength.One shouldkeepinmind,though,thattheeffectivewavelengthofthe
q

pulseviewedintheelectronframemay be ratherlargeforhighlyrelativisticelectrons.

APPENDIX B: CALCULATION OF PONDEROMOTIVE ACCELERATION



The task is to integrate the differentia] equation for the drift velocity in the parallel direction

over a period, using the exact solution to the motion (5). The two terms in the equation for d_=/dt,

averaged over a period, give

/ / r (d,.,= w 2-1,,, 1 aPll _, 1 apj.. pj.
"_ = _ ao m_l 8a dt m",/o a_z m'7 d't dt

(43)
1 8Pll

- 2_"d_ m"y 8a m_o aa

This integral takes a simple form when the exact solution (24) is substituted:

2xwda fo2" (ac c°s217)/2 + ac(1- c°s2rl)/2 drldrI 703' = 2_rWdaf0_"2_o&7"dl7 (44)

The only variable term in the integra_d is 7, and 1/_ averages to lh0 , u before. Therefore the

average ponderomotive acceleration is

• dT/27'70"
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FIG. 1: Stationary oscillation in two frames. The right frame has velocity 0.5c in the
positive Vdirection, measured in the left frame. As a result the figure-eight is reduced in
size by a factor "y= 0.86 and rotated by an angle 0 = 30°.
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FIG. 3: "Cyclotron" motion of oscillating particles in uniform magnetic fields. In the first frame

aappl|,d = 4.66 × 10-4 (I0 T). In next frame _applied "- 0.466; in last frame a, ppl|,d ----4.66. The
strangely shaped orbit in the last frame is only repeated a few times before the motion changes
markedly. The figures are scaled approximately proportionally to the magnetic field strength.
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FIG. 5: Computer plot of gradient-B drift of oscillating electron in spatially varying
magnetic field. The magnetic field varies linearly with scale length 100 A.
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