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ABSTRACT

The effects induced on plasma electrons by an externally
launched ion Bernstein wave (IBW), in the presence of a lower hybrid
wave (LHW) in the current drive regime, are studied by analytical
integration of the IBW ray-tracing equations along with the
amplitude transport equation (Poynting theorem). The electric field
amplitude parallel and perpendicular to the external magnetic field,
the quasilinear diffusion coefficient, and the modified electron
distribution function are analytically calculated in the case of IBW.
The analytical calculation is compared to the numerical solution
obtained by using a 2-D Fokker-Planck code for the distribution
function, without any approximation for the collision operator. The
synergy between the IBW and LHW can be accounted for, and the
absorption of the IBW power when the electron distribution function

presents a tail generated by the LHW in the current drive regime can
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I. INTRODUCTION

It has been shown!.23 that the ion Bernstein wave, normally
used to heat the bulk ions of the plasma at a given harmonic
resonance, could also be used to heat the electron population directly
due to the sharp increase of the parallel refraction index nj along the
ray trajectory.

As previously shown,2.3 n; oscillates along the trajectory,
assuming both positive and negative values. Its amplitude depends
essentially on the poloidal location of the antenna, and (when the
antenna lies on the equatorial plane) on the nj-spectrum launched by
the antenna itself. Hence, a wide range of values of ny are present
inside the plasma.

The IBW can be used in conjunction with the lower hybrid wave
to improve the efficiency of lower hybrid current drive (LHCD).4> This
synergistic mechanism has been utilized by A. Ram, A. Bers and V.
Fuchs® to explain the experimental results of LHCD on the Joint
European Torus (JET),” where LHCD was used in conjunction with the
ion cyclotron fast wave (ICFW) to improve current drive efficiency in
the center of the plasma.

IBW alone normally cannot produce a net current in the plasma,
because the launched wave spectrum changes continuously from
positive to negative values. However, LHW launched with a spectrum
centered on low values of nj, lying just above the accessibility
condition, generates an asymmetric tail in the electron distribution
function that extends up to very low parallel velocities and produces
a net current’ inside the plasma. The effect of IBW used in conjunction

with LHCD can be twofold. First, IBW can sustain this current,



dissipating its energy on the side of the parallel velocity where the
asymmetric tail already exists due to LHCD. Second, IBW can modify
the distribution function of the electrons by helping to fill the so-
called LHCD spectral gap for very low parallel velocity (high values
of ny). It is clear that the presence of the electric field due to IBW
may modify the electron distribution function only if the amount of
power, which flows parallel to the toroidal magnetic field, is
sufficient to compensate for the collisional diffusion effects, which
tend to restore the distribution function to a Maxwellian function.
The relevant parameter is the ratio of the quasilinear diffusion
coefficient to the collisional diffusivity, which measures the ability
for IBW to extract the thermal electrons from the bulk distribution
and accelerate them to contribute to the LHCD.

In this paper, a quasilinear analysis of the absorption of IBW by
the electron population of the plasma is performed. It uses the
analytical calculation of the amplitude of the electric field along the
trajectory to obtain the quasilinear diffusion coefficient and the
perturbed electron distribution function. The damping of the IBW is
also calculated on the tail of the distribution function generated by
the previous application of LHCD which has bridged the nj-gap. This
calculation is particularly relevant because of the IBW/LHW
experiments on the Princeton Beta Experiment-Modified (PBX-M)3
device aimed at demonstrating the synergy between IBW and LHCD.

By following N. Fisch,? and N. Fisch and C.F.F. Karney,!0 the
Fokker-Planck equation, which shows the evolution of the
distribution function, is analytically solved in only one dimension of
velocity space (parallel to the magnetic field) but kept Maxwellian in

the perpendicular direction. This means that only the electron




parallel dynamics has been retained in the calculation, while the ion
dynamics has been assumed not to affect this process. This is
because the IBW interacts only with the electron population of the
plasma in the PBX-M experiment. From a mathematical point of view,
this is a considerable simplification, since it allows one to obtain an
analytical expression for the electron distribution function and,
therefore, the damping.

In the two-dimensional case (parallel and perpendicular
velocity), a numerical integration of the Fokker-Planck equation is
performed together with the dynamical evolution of the IBW+LHW ray
trajectories. The 2-D Fokker-Planck solver!!.12 includes the
relativistic collision operator derived by B. Braams and C.F. Karney,!3
and does not use the asymptotic expansion valid for velocity three to
four times greater than the thermal velocity. The numerical and
analytical calculations of the distribution function are compared, and
the limits of validity of the analytical theory are characterized.

The paper is organized as follows: in Sec. I, the amplitude
transport equation is solved along the IBW-ray trajectory, and the
parallel and perpendicular components of the electric field are
calculated by using the polarization rules. In Sec. lll, the quasilinear
diffusion coefficient is obtained, together with the electron
distribution function in the resonant region of the velocity space for
both IBW and LHW. In Sec. IV, the IBW damping on the analytical
electron distribution function, which is flattened by the presence of
LHCD in a large interval of the parallel velocity, is calculated and the
results are discussed. Sec. V contains the numerical results and a
comparison with the analytical calculation. The conclusions are

reported in Sec. VI.



Il. THE AMPLITUDE TRANSPORT EQUATION

The Wentzel-Kramers-Brillouin (WKB) analysis of wave
propagation in the geometric optics approximation leads to a set of
ordinary differential equations for the position r, the wave vector K,
the time t, and the frequency o, which are formally the classical
Hamilton equations for position and momentum. At a higher order of
the WKB expansion, an equation for the slowly varying amplitude of
the electric field can be deduced that satisfies the Poynting
theorem.14.15,16 This equation, in the electrostatic approximation, can

be written as follows:

didl2 din(dH/9w)
T d)lZ—dt - D12 VeV - 2y(fe) D12 (1)
. . . . dH/dk
where @ is the amplitude of the electrostatic potential, Vg4 = - /30

is the group velocity of the wave packet, y is the wave damping rate,
which in the quasilinear regime is a function of the electric field
itself through the electron distribution function fs (solution of the
Fokker-Planck equation), and H is the IBW electrostatic dispersion
relation.

Equation (1) is nonlinear because generally, the damping term
depends on the first derivative of the distribution function in
velocity space calculated at the resonant velocity point vy=w/k;. The
distribution function fq(t,vy), in a quasilinear theory, is obtained by
solving the Fokker-Planck equation with a quasilinear diffusion term
that depends on the strength of the electric field itself, as shown in
Refs. 9,10. In the simple case we are considering, the one-

dimensional Fokker-Planck equation can be analytically integrated to




obtain an analytical expression of fg(vy) for t—>e (steady state), as
will be shown below.
Equation (1) can be solved by the method of successive

substitutions (Picard's method), i.e. :

d)2n+1
P2

t t
=expl- [f(t)dt - 2 [y(t.fe(@n2))dt )
0 0

where @, is the electrostatic potential at the plasma edge, the

function f(t) is defined as:

din(aH/3w)

()= — gy

+ VeV (3)

and the damping y depends on the field, at the previous iteration,
through the electron distribution function.

The integral of Eq. (3) that appears in Eg. (2) can be analytically
solved using the solution of the ray equations given in Refs. 2,3,
where the following simplified IBW dispersion relation was obtained

as:

i1mi(n ¥ 8 _
H=1-500 ([\le&))zt,(x)nu2 X, () T(0) 0 (4)

c
In Eq. (4), ti(x) is the adimensional ion temperature profile, 80=;D—a , a

i(0
is the plasma radius, ﬂ=%2 is the ratio between the ion Larmor

radius and the major radius of the tokamak calculated at the plasma
center, N is the ion harmonic number, ¢ is the inverse aspect ratio, n;

and n; are the perpendicular and parallel refractive indices,



respectively, and x is the normalized radial variable that measures
the distance from the resonance layer, which, for the sake of
simplicity, has been placed at the plasma center.

In the dispersion relation, Eq. (4), the parallel wave number
depends on the radial and poloidal variables. After an integration of
the ray equations,23 we obtain an expression for the parallel wave

number which oscillates along the trajectory as follows:

ni(x) = A(x) (-C1 sin v12l(x) + C, cos v122l(x)) (5)

The amplitudes C; and C, are related to the plasma parameters by:

_ 12
cl=az505T”2n-l(?;—‘?) N6y

Ca=njip (6)

_i(gl 1/4 _g_a_ 1/2
A = Ti<x)) (q(x))

where 87 = -.:.;(i_(%%, Ti(x)=T;i(0)7i(x) with Ti(0) and Tj(a) being the central
I

and edge ion temperatures, respectively, 8y is the poloidal launching
angle, and njis the value of the parallel refraction index at the

antenna. The phase I(x) is given by:

x§1+x02)1/2) 7)

[(x) = In ((x2+x32)1/2
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: _(9a _ Y2 _(mi) __1 . I :
with x; = (qo 1} ,and v = Mo | TN2qq? >>1, which signifies a rapid
oscillation of the value of n near the plasma center. Equation (5) can

be written concisely as:

ny(x) = p(x,eo,nuo)cos(vlﬂl(x) + arctan %—12) (8)

with:

p(x,80,n10) = A(X)(C12+C?) " (9)

Figure (1) is a plot of n; vs. x for a bundle of rays starting at
different poloidal angles -15°<89<15° (for PBX-M this angle width
corresponds to an 11-cm-high IBW antenna), with a uniform
distribution of power along 6, and 6<nj;o<12 for typical plasma
parameters of PBX-M. These are: ng(0)=5X1013 cm-3, ng(a)=5X1012 cm-3
(central and edge density, respectively, with parabolic profile),
Ti(0)=T¢(0)=1.5KeV, Ti(a)=Te(a)=150eV (central and edge ion and
electron temperatures, respectively, with parabolic profiles),
Bo=1.5T (central magnetic field), f=42x106Hz (IBW frequency), N=3
(ion harmonic number at the plasma center), a=32cm (plasma radius),
Ro=164cm (major radius), and qa=3, Qo=1 (edge and central safety
factors).

Figure (1) shows the evolution of the parallel wave number
according to the predicted oscillating behavior. The nj-width of the

launched spectrum remains finite everywhere inside the plasma. This

C
is due to the presence of the phase shift (the term arctan (C_;) ),



which depends on the poloidal injection angle. If we assume the wave
damping to be very small compared to the other terms in the
amplitude transport equation (Eq. (1)) (y=0), the evolution of the
amplitude of the electrostatic potential for each component of the
wave spectrum can be obtained by simple integration of Eq. (3) along

the ray trajectory:

i(a))uz (1+e )exp(ﬁ) da2(n) (10)

O2(x,ny) = Gi(x) 1+ex) X2

where ¢ is given by:

£ A A
9 = -7 62ycos|2arctan |- xcos{2|vl2Inx + arctan—
4 Ao Ao

= (A12 i A02)1/2

(11)

1/2
Ao 'm; /2 nd; Nilo (do
1= N &8;\da

A =69

and ®o(ny)=®(x=1,ny) is the Fourier component of the amplitude of the
electric field at the antenna. In regions where the field diverges
(x=0), integration of the full wave equation is required to obtain the
correct behavior of the field. The calculation of the quasilinear
diffusion coefficient requires the knowledge of the electric field

components parallel and perpendicular to the external magnetic field.




These components are evaluated performing the gradient of the

electrostatic potential in the parallel and perpendicular directions:

E2(x,ny)=E(X,nii0) E20(ni1)
(12)

E(x!nIIO) =

n2;(x) i(a))”2 (“8 ) exp(®)

N0 \Ti(x) 1+ex) X2

In particular, when launching waves on the equatorial plane 60=0, the

function E(x,nj) reduces to:

i(a))ll2 ( 1+¢ ) exp(8) (13)

E(x) = A%(x) cos?(v112l(x)) Gi(x) Trex | 2

and the expression for the field can be resolved into factors of two
functions, one depending on the radial variable, the other on the wave

spectrum. The perpendicular component of the field is:

2
e G (14)

E2,(x,ny) =
In Eq. (12), we can choose a Gaussian wave energy density spectrum

at the antenna E20(nu)=Cexp{-[(n“-n“p)/Sn“] 2}, where njp is the spectrum
peak value, &nyis its width, and C=[(7c)1/225n||]_1 is the normalization

constant We can, then, plot (Fig. (2a,b)) the evolution of any spectral
component along the parallel direction, normalized to the total field
at the antenna, vs. the radial variable x for 8¢=0° (a) and 60=15° (b),
for the plasma parameters of Fig. (1). The parallel component of the
field mainly follows the behavior of the parallel refraction index. In

Fig. (3a,b), the 3-D plot of Fig. (2a,b) is given vs. x and nyp (the initial

10
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wave number) for both angles 8,=0° (a) and 8=15° (b). A slight
amplification of the parallel component of the field occurs in
relation to the peak values of nj (Fig. (2a)), with a greater
amplification for poloidal launching angles [8¢I>0° (Fig. (2b)).
Knowledge of the evolution of the electric field inside the
plasma allows one to calculate the quasilinear diffusion coefficient
everywhere in the plasma. Consequently, the distribution function for
the electrons along the parallel velocity can be evaluated, assuming
that fo is Maxwellian in the perpendicular direction. In the next
section, we will calculate the quasilinear diffusion coefficient. Then,
by simple integration of the collisional Fokker-Planck equation,® we
will determine the evolution of f, as a function of the radial variable
and the parallel velocity. The crucial parameter is the ratio between
the quasilinear diffusion coefficient and the collisional diffusivity.
If this parameter is high enough, there will be a considerable
distortion of the distribution function from the Maxwellian. However,
if the collisions are more important than the diffusion induced by the
electric field, they will tend to restore the Maxwellian electron
distribution function, and the effects of the field on the plasma will

be negligible.

11



ll. THE IBW/LHW QUASILINEAR DIFFUSION COEFFICIENTS

Diffusion of the electrons in the velocity space can be induced
by the presence of IBW and/or LHW parallel electric fields in the
plasma for a range of values of nj launched by the antenna, which vary
along the trajectory according to Eq. (5) in the IBW case. The

quasilinear diffusion coefficient is defined!4 as:

<+ oo
e
Dqi(viix) = = (m_j JE (ky1,x)8(w-kyvy)dkp (15)
IEn(ku,x)12 . . -
whereE(ku,x)=—”(Eul is the wave energy density per unit interval

of wave number space. Performing the integral of Eq. (15), we have:

Do) = (1] 25 € (lamx) (16)

where, for an IBW electric field, we have € (kj,x)=E(x)E€ (ki) (Egs. (12)

and (13)) for equatorial wave launching.

After straightforward calculations, the average (along the Bo-

parallel direction z) electric field energy density is given by:

+ co

<8_1r = JE (ki dky (17)

demonstrating what we stated before, i.e., € (kj) is the wave energy

density per unit interval of wave number space.

12



Substituting Eq. (12) in Eq. (16) and taking, for the sake of simplicity,
a uniform wave spectrum in the interval kj;<kj<kjz, the IBW

quasilinear diffusion coefficient can be written as follows:

Ots) = 7 o] () ) < 2> (e

vk . . .
where u= Vt: is the velocity parallel to By and normalized to the
e

electron thermal velocity, and Akj=kj-kj;is the width of the IBW
wave spectrum, which is a function of the radial variable. The
quasilinear diffusion coefficient in Eq. (18) has the dimensions of a
squared velocity over time (I2/t3). It can be broken into two factors,
one depending on x and the other on u. Moreover, Dq can be directly
relatéd to the injected wave energy at the antenna.

The quasilinear diffusion coefficient for LHW has been
calculated, for simplicity, in the case of a uniform wave spectrum at
the antenna, assuming a cylindrical plasma. In this case, the

propagating wave energy density for an electrostatic LHW is given by:

172
(-€22€xx)

Ei2(x,kn) = En(x=1,ki) (19)

X(-€2z€xx

where:
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0)2 (1)2
exx=1- 2p|2_ 2p92z1
® -Qci w?-Q .,
(20)
2 2 2
Dpi Ppe (’)pe(x)
=l e T @

for the lower hybrid range of frequencies.
Substituting Eq. (20) in Eq. (19) and then in Eq. (16), the

quasilinear diffusion coefficient for LHW is obtained:

eV 1 (ne(a)/ne<0))”zj 1y _E
Dhgi(x,u) = = (me (UVthe)( xnl2(x) (Ak“) < 81t> z (21)

where n(x) is the adimensional density profile, ne(a) and ne(0) are,
respectively, the edge and the central value of the plasma density,
and Ak is the width of the launched LHW spectrum, which in the case
of a cylindrical geometry does not vary along the ray trajectory. The
ad-hoc assumption of the filling of the spectral gap has been made so
the width of the wave spectrum extends from low values (just above
the accessibility condition) to high values (three or four times the
electron thermal velocity).

The diffusion due to the collisions is defined as:

4
cope(x) inA

DCO“(X) = VOVtzhe = 47me(x)V’(he(x) (22)

where vgis the electron-electron collision frequency, which

decreases by increasing the electron temperature and increases by

14



increasing the plasma density. ne(x)=ng(0)ne(x) is the plasma density,
wpe(x) is the electron plasma frequency, vihe(x) is the thermal
velocity, and InA is the Coulomb logarithm, which is approximately 20
for Te<10 keV.

The function:

uDiby, e 1 E(x)
Pune) o =~ [ (o) <ee>. @

Ovt

(plotted vs. the radial variable x in Fig. (4) for typical PBX-M plasma

parameters with a moderate level of IBW power (0.2 KW/cm?2))
depends only on x. It is proportional to cos(v1/2l(x)), and ranges from

very high values, at points where the cosine is equal to one, to zero

at points where the cosine is zero. For the LHW we have:

Dy (e ((ne<a)/ne(0))“2J
DLHW(X) coll =T (meT (vovg, J xnl/2(x) (Ak]]) < 87t> (24)
the

For an LH coupled power of about 0.5 kW/cm2 and a frequency
f=4.6X10°Hz, D yw is much greater than unity near the plasma center.

The resonant parallel velocity u(x)=(vi/Vine)=Cc/(NyVine), for the

C
case shown in Fig. (1), is proportional to csc (vllzl(x) + arctg 61)’

meaning that in regions where ny(x) goes to zero, u(x) goes to infinity.
However, in these regions, the parallel electric field approaches zero
as well as the quasilinear diffusion coefficient, meaning that the
electron distribution function is Maxwellian. The width of the

launched spectrum in the velocity space inside the plasma is:
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1 1
Min(nu(nno,eo)) ] Max(nn(nno,eo)) B

Au(x) =

(Max(nu(nuo,eo)) - Min(nu(nllo,eo)&

= : (25)
Max(ii(nio,80) ) Min( nii(Miio, 8o))

In the case of equatorial launching of waves (60=0), the quantity Au of

Eq. (25) reduces to:

_ c(npz - Nyjo1)
Vihe A(X)N1102N1101

csc(v12l(x)) (26)

When the argument of the cosecant is zero, i.e., in regions where the
parallel wavenumber goes to zero, the width Au becomes infinite. In
these regions also the electric field goes to zero, and the distribution
function reduces to a Maxwellian. In the case of 6,20 and for a
launched spectrum of 8¢-values -15°<8,<15°, it is necessary to solve
Eq. (25) numerically. The result is given in Fig. (5), where a plot of Eq.
(25) is shown vs. x for the plasma parameters of Fig. (1). The width
Au (the distance between the dashed and the solid line in the velocity

space of Fig. (5)) is finite at the plasma edge (x=1) and for 1<x<0.9; at
the point x=0.9, Min(n”(nuo,eo)):O. It becomes infinite in the positive

half-plane when Min(n"(nno,eo)) tends to zero from the right (x—0.9),
and infinite in the negative half-plane when it tends to zero from the

left. It is still finite in the negative half-plane for 0.55<x<0.6 and

infinite when x—0.55 and x—0.6 at points where Max[n;(nj;,080)] goes

to zero. The vertical asymptotes, in the plane (u-x), indicate the

points where ny(nye,80)=0. Nonetheless, due to the variation of n; along

x, the wave spans the whole of velocity space. This means that during

16



its propagation, the wave is able to distort the distribution function
at all velocities. However, it is clear that when n; — 0 (U = =) the
parallel electric field goes to zero (i.e., Eq. (12)). Here the quasilinear
diffusion coefficient will be too small to distort the distribution
function. It is reasonable to suggest that the IBW can affect the
behavior of the distribution function only for low parallel velocities
on both sides (i.e., positive and negative values of u).

The solution of the 1-D Fokker-Planck equation, when IBW and

LHW are concurrently present, is given by the Fisch formula®

u
udu

fo(uX) = Co exp| - ¢+ us(DPai(xu) + Dihg(x,u)
+u ( Deoll

(27)

Substituting Egs. (18), (21) and (22) in Eq. (27), and using the
functions Digw(x) and D_nyw(x), which are independent of u, the integral

of Eq. (27) can be analytically evaluated to obtain:

fo(U,X) = Co [ (Dot l ) * uzJ—a (28)

where:
*= 2(DLHW(X)1+ Diaw(x)) (29)
for uq(x) = m < U < Uz(x) = o (i.e., inside the wave

number spectrum interval where the wave is present). Outside this
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interval, the distribution function is Maxwellian. This can be verified
by performing the integral in Eq. {27) for Digw=DLHw=0.

In Egs. (28) and (29), Digw(x) and D rw are given by Egs. (23) and
(24). The constant Cy can be determined by the normalization of fo(u)
in all of velocity space.

The effect of IBW and LHW fields on the distribution function
can be seen in Eq. (28). For every radial location x, the distribution

function will be distorted with respect to the Maxwellian

0
<U<U, =T, i.e., inside the range of
Kii2Vithe 2 = Kii1Vthe g

distribution for uy =

the wave spectrum interval. When Dinw(x) or Dipw(x) are sufficiently
large, a significant distortion of the distribution function from the
Maxwellian will take place.

In Fig. (6), a 3-D plot of the distribution function vs. u
(normalized velocity) and x (radial variable) is shown for a case
where only an IBW of moderate power density (0.2 kW/cm?) is present
in the plasma (in this case (DLHw=0)). Fig. (7) shows a projection of
the distribution function on the plane (fo-vy) for all the x-values. A
large distortion of the distribution function can be noted in relation
to the maxima of the parallel electric field, for typical parameters of
a PBX-M circular-shaped plasma (as in Fig (1)). This can be more
clearly seen in Fig. (8), where the contour plot of fe is shown with the
evolution of nj; (dashed curve).

it can be verified from Fig. (7) that IBW affects the electron
distribution function on both sides of the velocity space, and in a
range of values that are one to three times the thermal velocity. This
behavior can be explained by the fact that the parallel wave number
changes from 0 to very high values during the propagation. Moreover,

the paraliel electric field contributes to a significant distortion of

18



the distribution function only for high values of the parallel
refractive index (low velocity).

It can be easily deduced that IBW alone cannot produce a net
current in the plasma, unlike LHW. LHW can produce an asymmetric
distortion of the distribution function in a wide range of resonant
parallel velocities, generating a tail in the distribution function that
extends up to large values of velocity.

In the next section, we will examine the possibility of
improving the efficiency of LHCD by simultaneously launching an IBW.
This is done by calculating the damping of the IBW on the tail of the
distribution function generated by LHCD.
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IV. DAMPING OF THE IBW IN THE PRESENCE OF A LHW-TAIL

This section contains the calculation of the IBW damping on the
distribution function tail generated by a high-power LHW. This is a
typical experimental situation of PBX-M3 where approximately 400
kW of lower hybrid wave power is coupled to the plasma in the
current drive regime. After this, a shorter IBW pulse at lower power
(around 100 kW) is coupled to the plasma for 6<nje<12, and
simultaneously with LHCD. The question is whether or not the power
launched by the IBW could be absorbed by the electrons present in the
tail generated by LHW, whose spectrum inside the plasma extends
from nj=1.8 to 8 (filling the nj-gap).

From Eq. (2) and the analytical solution of the integral along the
trajectory of the expression in Eq. (3), we can write the formal

solution for the electrostatic potential:

®2,1  (Ti(a)V/2 [ 1+ \exp(d) !
o2 =Gi<x)) (1+ex) X2 exr{- ZOJY(t-fe@nz))dt] (30)

The damping decrement of an IBW along the ray trajectory for each

Fourier component of the wave spectrum is given by:
t
() = [ 2Jv<t,fe(d>n2)>dtJ (31)
0

It should be noted that when two wave spectra (LHW+IBW) are

simultaneously present inside the plasma, the electron distribution
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function in Eq. (31) depends on both wave fields through the LHW and

IBW quasilinear diffusion coefficients.
Using the ray equation dx/dt=-8¢d,,H/dxH, where ny is the wave

number in the radial direction, we can write I" as a function of x:

X
Jeo (D2
S0 Vgx
1
where:
kog,_Aok Him
™ =3h20 = oHew (33)
HIm = - 1 wpe?(X) (dfe(X,U) (34)
Vthe®(X) \ AU Ju=c/nyvine
and:
2
oH/dny . 8-1 mpi(x) Ti12(x)x (35)

T T Y SN T
[

H is the IBW dispersion relation (Eq. (4)), H'™m is the imaginary part of

the dispersion relation, vgx is the group velocity along the radial

direction, and fe(x,u), the distribution function of the electrons in the .

parallel direction, is given in Eq. (28).
Using Egs. (33)-(35) in Eq. (32), we obtain:
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1
12 T4(0) Ti1/2(x)(dfe(x,u)
n Te(0) | 9% T | du

X

T(x) = (36)

=C/N|Vthe

The integrand of Eq. (36) contains the derivative of the distribution
function in the resonant velocity point u=w/(K;Vihe)=C¢/(NyVtne), Where
nyis the IBW parallel wave number which depends on x (Eq. (8)). The
derivative of the distribution function can be calculated starting
from Eq. (28). We obtain:

(ia((iﬁ;ull | : ( . n_a_l (37)

- +
=¢/NVine NiiVihe L(D|Bw(x) + DLHW(X)) N Vihe

where the constant Cy, is determined by imposing the boundary
condition on the distribution function, which, outside the interval of
resonant velocity, is the usual Maxwellian function.

Equation (30) is solved by numerical iteration and the IBW
energy decrement exp(I'(x)) is obtained for each component of the
spectrum when a LHW distorts the Maxwellian profile of the
distribution function (D yw#0).

A plot of the IBW power decrement vs. x is given in Fig. (9) for
typical plasma parameters of the PBX-M machine, and for only one
component of the spectrum njp=6 when a LHW flattens the
distribution function over a wide range of parallel velocities (solid
curve). Clearly, this calculation must be repeated for all the parallel
wavenumbers of the power spectrum, each of them carrying a
fraction of the total power. On the same plot, we also show the power
decrement obtained when we can neglect the effect of DLyw and Digw

(dashed curve). In this case, the distribution function is Maxwellian,
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and we are considering linear damping. As shown in the figure, the

quasilinear absorption is greater than the linear absorption in the

c
space interval where the velocity space value (V”’(n_")} corresponding

to the launched IBW ny, is more than three times the thermal velocity.
This is clear from Fig. (10), where we show a plot of the distribution
function along the parallel velocity for a Maxwellian case (solid

curve) and a case where D yw=0 in a central region of the plasma

f
(dashed curve)). The slope of the tail c:j_e for vi/vine=3, in
U Ju=c/nyvine

the distorted case, is greater than in the Maxwellian case, and the
power decrement is proportional to the value of the slope of the
distribution function (Eq. (35)). In intervals where the IBW-nj value is
such that the related value in the velocity space is less than 3vihe,
the absorption of the wave is less than in the linear case. In fact, the
value of the slope of the distribution function is greater for the
Maxwellian case (Fig. (10)). Thus, each component of the launched IBW
can be absorbed by the plasma in zones where the wave spectrum
satisfies the above conditions.

To show this point more clearly, we have plotted in Fig. (11) the
interaction zones, in velocity space, between IBW and LHW as it
results from the ray tracing evolution of the parallel wavenumbers.
The velocity u(x)=c/(n(x)vine(X)) (included between -10 to 10) is
plotted vs. x=r/a (normalized radial variable) in three cases
nu(x)=nnsw(x) (dashed line), nyLpw1(x) (triangles), nuLHwa(x) (circles).
For the LHW case, the subscripts 1 and 2 refer to the low and high
boundary of the LHW spectrum, while in the IBW case we have taken
the peak value of the spectrum, nyp=6. The LHW affects and modifies

the distribution function in the zone included between the curves of
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circles and triangles. When LHW and IBW travel in the same spatial
regions, the IBW can fall in these zones in velocity space and lead to
quasilinear absorption. Outside these regions, the distribution
function is Maxwellian and the IBW-absorption is linear.

This analysis is based on the analytical integration of the IBW
ray tracing equations with a 1-D Fokker-Planck equation using an
asymptotic evaluation of the collision operator at the high velocity
limit. It shows that the IBW can be absorbed by the electrons in the
tail generated by the previous application qf LHCD. The electrons,
under the effect of the IBW electric field, would undergo a further
acceleration with an increase oin the lower hybrid current drive
efficiency.

The approximations used in the analytical derivation of the ray
tracing equations appear to be well-tested, and the results are very
accurate. However, with the analytical integration of the 1-D Fokker-
Planck equation in the high velocity limit, there are some problems
when the waves (IBW and LHW) interact with the low velocity plasma
electrons. In this case, in fact, the ‘asymptotic expansion is no longer
valid. The next section contains the results of a numerical
calculation for the dynamical evolution and damping of the
interacting waves obtained using a 2-D relativistic Fokker-Planck

code.
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V. NUMERICAL ANALYSIS OF THE IBW/LHW SYNERGY.

A numerical code which includes IBW and LHW ray evolution,
calculation of electric fields, and quasilinear diffusion coefficients
for IBW and LHW, has been coupled to a new version of a 2-D
relativistic Fokker-Planck equation solver which includes the
accurate Braams-Karney collision operatorll.12, The power decrement
of a 2-D propagating IBW in a non-Maxwellian background, strongly
distorted by a LHW in the current drive regime, has been compared to
the one obtained in the previous section using the analytical
approach.

The plasma is divided into 100 layers, each characterized by a
value of the poloidal flux function y, which in a polar system of
coordinates corresponds to the simple equation r=const. An IBW and a
LHW are launched from the plasma boundary with an imposed power
spectrum. The LHW spectrum is included between a minimum and
maximum value of the parallel wavenumber. On each layer the waves
are characterized by the parallel wavenumber, the electric field, and
the quasilinear diffusion coefficients obtained by integration of the
ray-equations (WKB approximation), as described in the previous
sections. At this point, the 2-D Fokker-Planck code is run assuming
the wave conditions found on each layer. The 2-D distribution
function and its derivative along the parallel velocity (given by the

code in spherical coordinates as: f(v,u) with v=(v 2+v2) and

Y
u=cos¢=cos{arctanv—:}) is transformed into parallel and perpendicular

coordinates. The derivative along vy is calculated at the resonant

point v= , and numerically integrated along v;. The damping rate

KilVthe

y can be calculated at any radial position, and finally, the power
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decrement T' (Eq. (32)) is obtained by integration along the radial
variable.

The Fokker-Planck code has been tested by running the code at
every radial position in the case of zero diffusion coefficients
(Diw(x) + DLuw(x)=0). In this case, the resulting distribution function
must be a Maxwellian because there are no waves interacting with
the plasma electrons. The power decrement has been calculated, as
described above, and compared to the analytical calculation. The
result is shown in Fig. (12), where the transmitted power normalized
to the coupled power has been plotted vs. x in the analytical case
(circles) and numerical case (triangles). The agreement is very good.

Figure (13) shows the transmitted power (Maxwellian: dashed
line and modified: solid line) vs. x for a case where an IBW s
propagating in a LHW-modified background distribution function. This
is the same case as in Fig. (9) of the previous section, where the
result was analytically obtained. A comparison between Fig. (9) and
Fig. (13) shows a very good agreement between the analytical and
numerical approaches. This could be explained by the fact that, in this
case, most of the power is lost for x>0.2, where the IBW interacts
with the plasma electrons in a range of velocities such as v)>2.5Vihe
(see Fig. (11)).

In Fig. (14), we have plotted the transmitted power vs. the
initial [IBW-parallel wavenumber for a large range of values
(2<nyipw<12) of the spectrum at four radial positions x=0.9, 0.6, 0.3,
0.1. We compare the case of Maxwellian distribution functions (lines)
with the case with LHCD in the central region of the plasma (x=0.9:
circles, x=0.6: squares, x=0.3: diamonds, x=0.1: triangles). A large

difference in the transmitied power is observed for x=0.1 (near the
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plasma center) in the range 2<njipw<5. The LHW, interacting with the
electrons, modifies the distribution function and changes the
absorption properties of the plasma, helping the IBW to be absorbed.
Therefore, the analytical approach provides a good description
of the IBW/LHW synergy in this range of plasma parameters. We are
then able to conclude that IBW can be used in conjunction with LHW to

improve the current drive efficiency.
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VI. CONCLUSIONS

A quasilinear analysis of the absorption of IBW by the electron
species has been analytically and numerically developed. The parallel
electric field, the diffusion coefficient, and the distortion of the
distribution function, caused by the presence in the plasma of a
strong electric field due to IBW, have been analytically determined.
This method was applied to analyze the combined effects of LHW and
IBW in a typical experimental situation for the PBX-M tokamak.
Numerical results for the IBW power damping rate have been obtained
using a 2-D Fokker Planck code. Cross-comparisons between
analytical and numerical calculations have been shown good

agreement between the two approaches.
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FIGURE CAPTIONS

Fig. (1) Parallel wave number for a bundle of rays starting at-
15°<09<15°, with 6<n;p<12 vs. the normalized plasma radius x for the
PBX-M tokamak plasma parameters: ne(0)=5X1013 cm-3, ne(a)=5X1012
cm-3, Ti(0)=Te(0)=1.5KeV, Ti(a)=Te(a)=150eV, with parabolic profile,
Bo=1.5T, {=42x106Hz, N=3 (3nd harmonic at the plasma center),
a=32cm, Ro=164cm, q,=3, qo=1.

Fig. (2a,b) The squared amplitude of the parallel electric field
normalized to the total field at the antenna vs. x for the plasma
parameters of Fig. (1) and a Gaussian power spectrum at the plasma

edge centered on n;p=9, for launching angles 6,=0°(a) and 6=15°(b).

Fig. (3a,b) Three-dimensional plot of the parallel electric field vs. x

and ny for 6p=0°(a) and 8¢=15°(b) for a Gaussian power spectrum, and

with the parameters of Fig. (2a,b).

Fig. (4) Quasilinear diffusion coefficient over collisional diffusivity

vs. x for the parallel electric field of Fig. (2a).

Fig. (6) Maximum (dashed line) and minimum (solid line) values of the
parallel velocity normalized to the thermal velocity vs. x for the

spectrum of Fig. (1).

Fig. (6) Three-dimensional plot of the electron distribution function
fe vs. x and u for an IBW of moderate power 0.2 kW/cm?2 for Digw(x) of
Fig. (4).
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Fig. (7) The plot of Fig. (6) projected in the plane (fe,u) for all x.

Fig. (8) Contour plot of fe(x,u) together with the evolution of nj(x)

(dashed curve) for nj =6 and nyp=12.

Fig. (9) Absorbed IBW power exp(I') vs. x for a Maxwellian distribution
function (linear damping) (dashed line) and a modified distribution
function (D yw=0.5) (solid line), when considering only one component
of the wave spectrum njp=6 (the peak value). The plasma parameters

are the same as Fig. (1).

Fig. (10) Distribution function fs vs. u for the Maxwellian (solid line)

and modified (DLHW;&O) (dashed line) cases near the plasma center.

Fig. (11) Velocity u=c/(n;(x)vine(x)) vs. x for the propagating I1BW
(solid line) and the boundary values of the LHW spectrum (circles and

triangles), with the same plasma parameters as in Fig. (1).

Fig. (12) Transmitted power vs. x in the case of a Maxwellian plasma
(Disw=D_Hw=0), obtained analytically (circles) and numerically

(triangles) for the same plasma parameters as in Fig. (9).

Fig. (13) Transmitted power of an IBW vs. x in the case of a
Maxwellian distribution function (dashed line) and when a LHW
interacts with the plasma (D yw=0) (solid line), numerically obtained
by running the 2-D Fokker-Planck code for the same plasma

parameters as in Fig. (9).
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Fig. (14) Transmitted power of an IBW vs. njjpw for four radial
positions x=0.9, 0.6, 0.3, 0.1, in the case of a Maxwellian distribution
function (lines) and when a LHW interacts with the plasma (D_yw=0)
(x=0.9: circles, x=0.6: squares, x=0.3: rhomboids, x=0.1: triangles),
numerically obtained by running the 2-D Fokker-Planck code for the

same plasma parameters as in Fig. (9).
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