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Chiral limit of QCD

Rajan Gupta @

*T-8 Group, MS B285, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 U. S. A.

This talk contains an analysis of quenched chiral perturbation theory and its consequences. The chiral behavior
of a number of quantities such as the pion mass m2, the Bernard-Golterman ratios R and X, the masses of nucleons,
and the kaon B-parameter are examined to see if the singular terms induced by the additional Goldstone boson,r’,
are visible in present data. The overall conclusion (different from that presented at the lattice meeting) of this
analysis is that even though there are some caveats attached to the indications of the extra terms induced by o’
loops, the standard expressions break down when extrapolating the quenched data with my < m,/2 to physical
light quarks. I then show that due to the single and double poles in the quenched 7', the axial charge of the proton
cannot be calculated using the Adler-Bell-Jackiw anomaly condition. I conclude with a review of the status of

the calculation of light quark masses from lattice QCD.

1. INTRODUCTION

The main question this review attempts to
answer is “should the ostrich care about the
alarmists view of quenched QCD”? The alarmists
are two groups, Sharpe and collaborators [3] [16]
[18] and Bernard and Golterman [1] [2]. They
have calculated, using quenched chiral perturba-
tion theory, a number of quantities to 1-loop and
point out that in the quenched approximation 7’
loops give rise to unphysical terms in the chiral
expansion, and in many cases the chiral limit is
singular. Also, the coefficients in the chiral ex-
pansion (including those of the normal chiral logs)
are different in the full and quenched theories.
The ostrich are the rest of us who wish to con-
tinue using the chiral expansions derived for the
real world for extrapolating quenched data to the
chiral limit. The answer, as I show in this talk,
is, unfortunately, YES they should care.

The artifacts due to 7' loops can potentially
invalidate all the extrapolations to the chiral
limit. The hope is that since these are loop cor-
rections and potentially large only in the limit
mg —+ 0, therefore, there might exists a window
in m, where the leading order chiral expansion
is valid and sufficient, albeit with coefficients dif-
ferent from those in full QCD. Extrapolations of
the quenched data from this range to the phys-
ical light m, may prove to be sensible, and the

difference between the full and quenched coeffi-
cients taken as a measure of the goodness of the
quenched approximation. With this goal in mind
I analyze the existing quenched data in the range
my/4 — m, and show that terms induced by the
7 are already visible and statistically significant.

In Section 9 I review the status of calculations
of 7@ and m;. The quenched Wilson fermion data
for 7 is almost a factor of two larger, even at
B = 6.4, than that for quenched staggered or
ny = 2 staggered or Wilson fermion data. The
estimates of m, depend on whether K or K* or ¢
is used to set the strange scale. These systematic
differences are much larger than statistical errors
and need to be brought under control.

2. QUENCHED CHIRAL PERTURBA-
TION THEORY

Morel [5] gave a Lagrangian description of
the quenched theory by introducing ghost quark
fields with Bose statistics. This Lagrangian ap-

- proach has been further developed by Bernard-

Golterman into a calculational scheme. To the
order we will be concerned with Lpg is

2
Lpe = f?str[(a,,za,lzf) +2u(MZ + Mz:‘f)]

+ aoa#‘l)06“¢o - mg(I)g (1)

where f = f, = 132 MeV is the pion decay
constant, ¥ = exp(2iIl/f), M is the hermitian




Figure 1. The pseudoscalar propagator, (b) the
hairpin vertex, and (c) the one bubble contribu-
tion to the n propagator in full QCD which after
summation of all diagrams has the form shown.
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quark mass matrix, y sets the scale of the mass
term, and str is the supertrace over quarks and
ghost quarks. The last two terms involve the field
B9 = (n'—77')/ V2, where 77’ is the ghost field com-
panion to the n/. These terms are treated as in-
teractions and give rise to “hairpin” vertices (see
Fig. 1) in the 9’ propagator. This introduces two
new parameters, m2 and a momentum dependent
coupling app?, in the quenched analysis. In the
full theory this vertex and the tower generated by
the insertion of bubble diagrams sums to give n’
its large mass, mZ/(1—ayp), while in the quenched
theory the 7’ remains a Goldstone boson and its
propagator has a single and double pole.

The strength of the vertex, mZ, has been cal-
culated on the lattice by the Tsukuba Collabora-
tion [4] by taking the ratio of the disconnected to
connected diagrams. It has also been determined
using its relation to the topological susceptibility

mi = 2nsx:/f2 = m, +m? - 2m% (2)

measured on pure gauge configurations. These
methods give 750 < mg < 1150 MeV. The pa-
rameter that occurs repeatedly in the chiral ex-
pansion of quenched quantities is § = m2/24x%f2.
Using fr = 132 MeV and mp = 900 MeV, the
mean of the above estimates, gives § & 0.2, how-
ever, its value could be different, in particular
smaller depending on the statistical and system-
atic errors in lattice data. One of the goals, there-
fore, is to extract its value from the lattice data
for the chiral behavior of as many quenched ob-
servables as possible.

Let me first give an intuitive picture of why
the ' propagator gives extra contributions. The

enhanced logs due to the n' are infrared diver-
gent, so it suffices to consider the p? = 0 limit in
the 1’ propagator. The single pole term is akin
to the pion in the full theory, 1/mZ, while the
double pole term (due to the hairpin vertex di-
agram) is ;lzmgal%-. Thus any time there is a
normal correction term like mZLnm?2 from pion
loops there will also be a singular term of the
form rzn‘;’-mf,anf, = milnm?Z ~ §Lom?2. This is
exactly “what one finds in the chiral expansion for

m2. Similarly, in the case of Mpycieon the reg-

ular chiral correction is o« m3, and the 1’ gives
an extra term o mim,. My goal is to expose
these extra terms in the present lattice data for
different observables, and extract § from them.

Further details on the formulation of the
quenched chiral lagrangian and on the calcula-
tion of 1-loop corrections are given in Refs. [1]
(3] [16]. The results of the 1-loop corrections
in the full and quenched theories show that
o the expansion coefficients are different,
¢ there are enhanced chiral logs,
¢ there are no kaon loops with strange sea quarks,
e values for parameters like f, u,.. are different
in the quenched expressions. I will assume that
this difference is implicit in all subsequent dis-
cussion even when the same symbols are used for
the two theories. Before addressing the question,
what are the consequences of these differences for
the various physical quantities and are they signif-
icant in the present data, I would like to mention
the difference in the strategies, after 1-loop cor-
rections have been calculated, of the two groups
of alarmists. I find that knowing their respective
emphasis helps in reading their papers.

Sharpe and collaborators focus on determin-
ing those quantities that can be extracted reli-
ably from quenched simulations. To do this they
use real world (or commonly accepted) values to
determine the chiral parameters and require that
the chiral corrections are small in both the full
and quenched expressions, as well as in their dif-
ference. Observables satisfying these conditions
are the “good” candidates. Bernard and Golter-
man concentrate on testing quenched xPT by
forming ratios of quantities which are (a) free of
O(p*) terms in Lcpt and (b) independent of the



ultraviolet cutoff used to regularize loop integra-
tion. The quenched chiral expansion of such ra-
tios then have terms proportional to the extra
parameter 6. Since these terms can be singular
in the chiral limit, it is necessary to assume that
there exists a window in quark mass where the
1-loop results are reliable. Then § can be deter-
mined from fits to the quenched expression, pro-
vided the fits to the quenched and full theory are
significantly different.

3. mZ VERSUS m,

Gasser and Leutwyler [6] [11] show that in full
QCD

m? = 2pmq (14 3 L(my) = £ L(m) +0(my)) (3)

where L(m) = m*Ln(m?/A?)/8n%f%. Bernard
and Golterman [1], and Sharpe [3] show that these
logs are absent in the quenched approximation.
Instead (for g = 0) they get

m2
(m2)q = 2umg(1— 6Ln(—/\7") +...). 4)

where XA is some typical scale of xSB. This ex-
pression has been refined by Sharpe, who summed
up the leading logs for the degenerate case m, =
ms. We use his result [10]

Lalme _

= 0 — anmq + cimg + eam? (5)

to extract J from a compendium of staggered
fermion data at 8 = 6.0 [7][8][9]. Expressing all
quantities in lattice units, the best fit gives

2
Ln—":n"—)Q = 1.54—0.044Lnm, +1.2m,—2.8m2.(6)

q
This implies that § ~ 0.053, i.e. much smaller
than the full QCD value 0.2; however, the break-
ing of flavor symmetry in staggered fermions has
an interesting consequence for this analysis. The
7' operator is a singlet under staggered flavor,
and different from the Goldstone pion which has
flavor 5. Thus one should use the correspond-
ing non-Goldstone pion mass in terms that come
from the 7. I use the # (which has flavor 747s)
mass as it is better measured and consistent with

Figure 2. Fit to staggered :Z—lz data at 3 = 6.0.
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the flavor singlet case. The data and fit using 7
mass in the log term is shown in Fig. 2 and gives

2
Lni’l"—)‘? = 1.35—0.13Lom2 +1.5mZ —2.4m? .(7)
q
In this form the coefficient of the Lnm, term is
8. Thus 6 = 0.13, a value consistent with the
estimate 0.2 based on the calculation of m3. Also
note that since the mass of flavor singlet state, 7,
does not vanish as my — 0, therefore, there is no
singularity at finite a due to the enhanced logs.

The above analysis show that if one wants
to extract the value of constant term A,, the
quenched data would give a significantly different
result depending on the kind of fit used. If one as-
sumes that the 5 data points by the Staggered col-
laboration [7] represent a window in which xPT
is valid and chiral corrections are negligible, i.e.
the relation m2 = A,m, is valid (as expected
at small enough my in full QCD) then one gets
m2 = 5.87my [7], whereas Eq.7 gives A, ~ 3.9, a
significantly different value.

Finite size effects in m, increase the value of
(m%)q/mq, so one might attribute the 4% devi-
ation at m, = 0.0025 in Fig. 2 to this artifact.
Fortunately, Kim and Sinclair [8] have obtained
high statistics data for m4 = 0.0025, 0.005, 0.01



on lattices of size L = 16, 24, and 32 as shown
in Fig. 2. There is clear indication of finite size
effects on L = 16 lattices, but the near agree-
ment between L = 24 and 32 data confirms that
L = 32 is essentially infinite volume, i.e. all the
points used in the fit are, within their statisti-
cal errors, free of finite size effects. To conclude,
the data show that the lowest order chiral expan-
sion has broken down and the effects of ' logs
are manifest for mg < m;/2. A similar analysis
with Wilson fermions is not yet useful because
the lowest m, used in simulations is ~ 0.4my, i.e.
the point where staggered fermions just start to
show significant deviations.

4. BERNARD-GOLTERMAN RATIO R
AND /.

The chiral behavior of f, in full QCD has been
analyzed by Gasser and Leutwyler [11] to be

fr = f[l=L(mg) - %L(mx) +
flmu+ma+my)Ly+muLs] (8)

where Ly and Ls are two of the O(p*) constants
introduced by them. In the quenched theory (for
ap = 0) Bernard-Golterman and Sharpe get

fr = f(1+muLs). (9)

The absence of the pion and kaon chiral logs in
the quenched expression is a 13 — 19% effect {cor-
responding to the range A = 0.77 — 1 GeV for the
chiral symmetry breaking scale in L(m)) using
full QCD parameters. In order to compare the
full and quenched theories, Bernard-Golterman
construct a ratio in a 4-flavor theory that is inde-
pendent of the cutoff A and O(p*) terms,

R= Ty (10)
fi1 faze

where m; = my. and my = my.. The expression
for R in the full and quenched theories is

1 m? m2
Fo_ 2 1y 2 22
R =1+ 3on2f2 [mn Ln - + mae Lin m, ]
2 2
m miq,
Re =1+ l:(mz —12m2 )anél - 1] . (1Y
11/ 22/ 22/

Figure 3. The Bernard-Golterman ratio R versus
the full QCD expression given in Eq.11.
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where the quantity within [ ] (called X)) increases
with the mass difference ms — m;.

The quenched Wilson data for R obtained by
the LANL [12], UKQCD|13], and Bernard et
al.[14] collaborations are shown in Figs. 3 and 4
versus the full and quenched expressions given in
Eq.11. The slope of the fit to R? gives §, while for
RF the expected slope is unity. The data favor
the quenched expression and give § = 0.10(3).

The caveat in this case is that the two points at
largest X< are obtained with m, = 2m, and one
could argue that 1-loop chiral perturbation the-
ory is not reliable for these masses. Barring this,
I believe that this quantity provides the cleanest
determination of 4.

5. BERNARD-GOLTERMAN RATIO x
AND (¥¢)

The second quantity constructed by Bernard-
Golterman that is independent of A and O(p*)
terms is

~ () Mz, — M2 ) (au)
for which xPT gives
Mg — Mg
ree — — 1
Xt s — 1y (13)

m mq—m m
Xiree T+ 6[Ln__l‘_ - —=——2In u]
md Mg — My, mg

XQ



Figure 4. The Bernard-Golterman ratic R versus
the quenched expression given in Eq.11.
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To evalue these expressions requires data for
the condensate at three values of m, and pseu-
doscalar masses for the combinations 7 = wuu,
K° = sd, Kt = su. At present only the
staggered [7] and Wilson [12] fermion simula-
tions at 8 = 6.0 by the LANL collaboration
have all the necessary data. Their results for
d = (X — Xtree)/Y, where Y is the factor mul-
tiplying é in the expression for x¢q in Eq.14, are
given in Table 1. The staggered data (the differ-
ence between Goldstone and non-Goldstone mass
in terms that get contribution from 7’ loops has
not been taken into account) has large errors and
would give the wrong sign for §. With Wilson
fermions the condensate in the chiral limit can be
calculated in two ways, using the GMOR relation
or the Ward Identity as explained in Ref. [15].
At finite m, there are lattice artifacts which we
cannot control, nevertheless, the data give rea-
sonable value for 6. This is probably fortuitous
and I believe that much better data is needed in
order to extract 4 from the chiral condensate.

Table 1
The Bernard-Golterman ratic X
Staggered Wilson(GMOR) Wilson(WI)

X 0.549(30) 0.608(6)  0.614(5)
Xtree 0.517(14) 0.620(2)  0.620(2)
xr  0.509(15) 0.616(2)  0.616(2)
s 0.10(5) 0.05(4)

6. CHIRAL EXTRAPOLATION OF THE
NUCLEON MASS

The behavior of baryon masses has been calcu-
lated in ChPT and has the general form [6]

Mp = M+ ZCEZ)M,-Z +z:c£3)Mji
+ O(miLnm,) (14)

where M; are m, K, n meson masses. The term
proportional to M? comes from pion loops and
is 25% — 50% of Mp for the octet. For exam-
ple, using the results of Bernard et al. [19] one
finds My = 0.97+0.24 — 0.27 respectively for the
first three terms in Eq.14. Thus, the loop cor-
rections in individual masses are large and one
could question whether xPT is applicable at all
to baryons. On the other hand xPT results for
mass differences and the Gellmann-Okubo for-
mula work very well, just as in the quark model.
So, it is possible that the loop effects somehow
conspire to just shift the overall scale, in which
case xPT is useful and it is worthwhile examining
the consequences of the quenched approximation.

Labrenz and Sharpe {16] have extended the
Lagrangian approach of Bernard-Golterman to
baryons using the “heavy-quark” formalism of
Jenkins and Manohar [17]. They show that along
with a modification of the ¢; in Eq.14 one gets a
mi M, term due to 7' loops. The quenched ex-
pression for degenerate quark masses is (assuming
ap = ¥ = 0, where + is a parameter in the baryon
sector of L. and defined in [16])

Mp =M+cY5My + B M+ M3 +...(15)

where c¢() ~ =25, ¢ ~ 3.4, and ¢® ~ —1.5
using the full QCD parameters.

Fits to lattice data using Eq. 15 are not very
reliable because the number of light quark masses



Figure 5. Fit to the LANL nucleon mass data.
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explored are typically 3 — 4 and only the point at
the heaviest mass (typically m, 2 2m,) shows
any significant deviation from linearity. I find
such 4-parameter fits to 4 points very unstable,
for example in the case of LANL data [12] even
the different JK samples give completely differ-
ent values of c(¥. The best I could do was to fix
one of the parameters and make a 3-parameter
fit and then vary the fixed parameter to minimize
x2. The best fit (fixing any one of the less well
determined coefficients, ¢!, ¢® or ¢, works
and gives the same final result on minimizing x?)
to the LANL data expressed in units of GeV is
shown in Fig.5 and gives

Mp =116 — 0.36 M, + 1.6M2 — 0.5M3.  (16)

Assuming ¢® = —2.5, Eq.eq:BaryLANL gives
§ = 0.14. The same method applied to 8 = 5.93
(012 sink) data obtained by the GF11 collabora-
tion[20] gives (this is an updated version of the
fit presented in Ref.[16])

Mp = 1.18 — 1.0M, + 3.0M2 — 1.3M3 (17)
which implies § = 0.4, and ¢(?) and ¢® have val-
ues close to those for full QCD.

7. THE KAON B PARAMETER

The kaon B parameter is a measure of the
strong interaction corrections to the K% — K°

mixing. It is one of the best measured lattice
quantities. For details of the phenomenology
and of the lattice methodology I refer you to
Refs.[21][22][23]. Here, I present a summary of
Just the chiral behavior.

Sharpe has calculated the chiral behavior of Bx
in both the full and quenched theories [23]. The
full QCD result is

2
Bk = B[1—(3+%)yLny+by+cezy+0(y2) (18)

where y = m%/(87%f%) ~ 0.2 and ¢ = (m, —
mg)/(ms+mg) measures the degeneracy of s and
d quarks. B is the leading order value for By,
which is an input parameter in xPT, and b and ¢
are unknown constants. The quenched result [18]

BfQ( = B [1 — (34 )yLny + b9y + c®%y

2—e_ 1-—¢
) 1
+( — Ln1+6+2)] (19)

has exactly the same form except for the addi-
tional term proportional to &, which is an arti-
fact of quenching. The term proportional to § is
singular in the limit € — 1, therefore it will not
be possible to extrapolate quenched results to the
physical non-degenerate case. For € = 0 this term
vanishes, and since there is little incentive to cal-
culate Bx for ¢ = 1 in the quenched approxi-
mation, therefore it is unlikely that we will, in
the foreseeable future, be able to extract § using
Eq.19.

The constants B, b, ¢ are different in the full
and quenched theories and cannot be fixed by
xPT. Assuming B = B%, then the coefficient
of the chiral log term is the same for ¢ = 0. This
is the best agreement one can expect between
the two theories, therefore, Sharpe advocates that
By for degenerate quarks has the possibility of
being a “good” quantity to calculate using the
quenched theory.

Using full QCD values 3yLny ~ 1; so one can
ask whether this normal chiral log is visible in
the present data and whether it should be in-
cluded in the extraction of Bg? With existing
data it is hard to distinguish this term from the
one linear in y as the range of mg is not large



Figure 6. Evidence of finite size effects in en-
hanced chiral logs in By.
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enough to significantly effect the logarithm. Also,
there exist data for mg, & m,/2, so for degener-
ate quarks (which, as explained above, is the best
~ one can do with the quenched theory) there is no
need for an extrapolation. However, for staggered
fermions By can be written as the sum of two
terms, Bg = By + By, each of which can be an-
alyzed using xPT. These quantities are defined in
Ref. [3] and are explicitly constructed such that
they do not diverge as 1/m?% in the chiral limit.
Both By and B4 have enhanced logs (terms pro-
portional to Lny and not suppressed by powers
of y) that have nothing to do with quenching, i.e.
are not due to the n’. It is these logs, or more pre-
cisely the volume dependence of these logs, that
has been seen in lattice data. Sharpe has shown
that this volume dependence is of the form

By(L) = By() = —(Ba(L)~Ba(co)) (20)

~ —b 2 6ule~mkl
G Yy e

The constant b, is not well determined, however,
the shape of the my dependence is. The stag-
gered fermion data at 8 = 6.0 on 16° and 243
lattices [24] are shown in Fig. 6, and qualitatively
confirm the expected finite size effects in the chi-
ral logs.

8. ME OF SINGLET AXIAL CURRENT
IN THE PROTON

Ever since the measurement of the spin struc-
ture of protons using deep inelastic muon scatter-
ing from protons by the EMC collaboration[25],
there has been much interest in the calculation of
the forward matrix elements of the singlet axial
current in the proton, (P, s|¢iv.vsq|p,s). There
are two possible Wick contractions that con-
tribute to this matrix element (M E). These con-
nected and disconnected diagrams are discussed
in [27]. Since the disconnected diagram is hard
to measure, Mandula [26] used the anomaly con-
dition to derive the relation

(D, s|AulP, s)s, = Nf;—s lim __.ZI{I X

@’ SITrFuVF/w(‘f) 17, s) (21)

where § = p'— 5" and s is the proton’s spin vector.
The hope was that it would be easier to measure
the ME of this purely gluonic operator. Since
the 7' propagator contributes to this ME at tree
level, the question arises whether Eq.21 is valid
in the quenched approximation. The answer is
NO [27]. Consider the Fourier transform of the
anomaly relation

g, <ﬁ’7sl Ap(q) lﬁ7s> =2mq <5la3|P‘ﬁ,3> +
Nyge (7' s| T FF|5s) (22)

Each of the three ME in Eq.22 can be parame-
terized in terms of form-factors as

<ﬁ’a Sl A#(Q) Iﬁs 3) = ﬂi')’-u"/SUGlA - iquﬁ‘/slthA,
(7', P|p,s) = aysuG¥,

(p",s| e FF |, 5) = aysuGF. (23)

In the quenched approximation the singularities

in these form factors for forward M E with respect
to ¢* and due to the 7' propagators are

G£(g?) no i’ poles
GAlg?) = a2z + ai + G,
MO = oy tEea e
GP @) = P2 + P1 + }5’
(@) (E-mi)?  (-m)
GF(g?) = . + F. (24)

(¢? —m%)



Equatinhg the single and double pole terms gives
two relations. Using these and taking the double
limit, ¢> — 0 and m4 — 0, gives

(87 ~
2MpGH(g® =0) = —ai+ Ny —2—:?13’ (25)
2mgy [ p2 Qg , ~ f1
=1 = - Ny~ (F = =—).
m, (mg, ”1) N5 (F - o)

The term proportional to Nya, /27 diverges in
the chiral limit and there is no obvious way of ex-
tracting the physical answer from it alone. Thus
the method fails in the quenched theory.

In the full theory, there are no double poles and
an analogous analysis gives

2MpG(g® = 0') = —a;+ N;;—;F,
- NOp_ 1
= Ny 27(( mf,,)’ (26)

which justifies the use of the anomaly relation.

9. MASSES OF LIGHT QUARKS

In order to extract light quark masses from lat-
tice simulations we use an ansatz for the chiral
behavior of hadron masses. Theoretically, the
best defined procedure is xPT which relates the
masses of pseudoscalar mesons to m,, mg, m;.

The overall scale p in the mass term of Eq.1 im-
plies that only ratios of quark masses can be de-
termined using xPT. The predictions from yPT
for the two independent ratios are [6] [32]

Lowest order Next order

(my + mgq)/2m, 21? 511T
(mg —my,)/m, i 35 -

In Lattice QCD it is traditional to make fits
to the pseudoscalar spectrum assuming m?, =
Ar(m; + ms) and using either m, or fr to set
the scale. (The expression in Eq.5 is not relevant
for this discussion since most quenched simula-
tions have m, > m,/2.) A consequence of using
just the linear term is that the ratio m,/m =
25, t.e. these fits can be used to extract either
.M = (my + mq)/2 or m, by using the physical
masses for m, or mg but not both. (One would
get a different number if O(mg) and chiral log
terms are included in the relation.) Furthermore,

since lattice calculations are done in the isospin
limit, m,, = mgq, therefore YPT can be used to
predict only one quark mass. The mass I prefer
to extract, barring the complications of quenched
xPT, is 7 as it avoids the question whether low-
est order xPT is valid up to my. Akira Ukawa
reviewed the status of @ at LATTICE92 [28] and
I present an update on it.

To convert lattice results to the continuum MS
scheme I use

2
Meont(q*) = Miase(a) [1_:29;5(109@*@)—0,”)] (27)

where ¢* defined in [29] is chosen to be 7/a,
Crm = 2.159 for Wilson [30] and 6.536 for stag-
gered fermions [31], and the rho mass is used to
set the scale. (I have not used the tadpole im-
provement factor of Uy [29] in Cp, and mygy as
this factor cancels in perturbation theory and is
a small effect otherwise.) The value of ¢g* used in
Eq.27 is given by [29]

L. —@—ia—(l) +0.025 (28)

g Giatt

to relate it to the continuum M S scheme at g* =
7 /a. Finally, all the results are run down to Q =
2 GeV using

m@ _ (M)%‘%x

m(q*) 9*(q)
2 . _
<1+ g (Q)mﬂ.g (q )(’71ﬂ02ﬁg’}’051)) (29)

with

FQ _ 1 _ BiLo[La(Z)]
1672 ‘,30Ln(§;)(1 3Ln(% ) (%0

The values of A used for the two cases, ny = 0
and 2, are 245 MeV and 190MeV respectively.
The status of calculations of (2 GeV) for
quenched Wilson (35] [20] [36] [37] [12] [38],
quenched staggered [39] [9] [40] [7] [8], dynam-
ical (ny = 2) Wilson [41] [42], and dynamical
(ny = 2) staggered fermions [40] [43] [44] is shown
in Fig. 7. I have suppressed error bars as I want
to first emphasize key qualitative features. The
quenched staggered, and ny = 2 Wilson and stag-
gered give Tt = 2—3 MeV and are roughly consis-
tent; however, the quenched Wilson results seem




Figure 7. 7 extracted using m, data with the
scale set by m,,.
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to approach that value from above and even at
B = 6.4 are significantly higher. (The recent re-
sult m, = 128(18) MeV by Allton et al. [45] for
both Wilson and Sheikholeslami-Wohlert actions
at 3 = 6.0 and 6.2 is consistent with the results in
Fig. 7 once one notes that 7@ = m,/25.) I believe
that, at this stage, it is important to understand
why the quenched results with the Wilson action
are so different from the rest!

An alternative to using mg = Zmassmg’ =
Z; lmg’ to calculate the quark masses with Wil-
son fermions is to use the Ward identity [34][15]

= Zamx (A(1)P(0))

4= 70 2 (P(DB(0)) (31)

Using the perturbative values for Z4 and Zp
(with ¢* = 7/a and boosted g? defined in Eq.28)
I get, for the LANL Wilson data, [12], @ =
3.53(10) MeV in contrast to = 5.15(15) MeV
as shown in Fig. 7. The statistical errors are cal-
culated using a single elimination JK with a sam-
ple of 100 lattices of size 32% x 64, so the differ-
ence is significant. The Rome collaboration [45)
has found a similar discrepancy and argue that it
can be resolved if one uses the non-perturbative
value for Zp, which they advocate calculating

using matrix elements of the operators within
quark states in a fixed (Landau) gauge. Their re-
sults indicate that perturbation theory (including
tadpole improvement) fails for Zp, and the two
methods for extracting 7 give consistent results
once the non-perturbative value of Zp is used.

Having fixed 77 one can extract mg, m, and my
using, for example, K*, D, and B meson masses
provided it is assumed that these masses are lin-
ear in the light quark mass, and in the heavier
quark mass around the physical value. Alter-
nately, one can use mg, J/1 and Y spectrum to
get at these quark masses directly without need-
ing to extrapolate in the light quark mass. The
results for m, and m; have been reviewed by
Sloan [33] at this conference so I will only ana-
lyze the data for m, and compare these estimates
to 2577. Note that the same data used to com-
pile Fig. 7 is used to calculate m, from mg- and
my, and the procedure for translating the value
to 2 GeV in the MS scheme is also the same.
The results are shown in Fig. 8. The estimate of
m from my is systematically higher by 15 — 20%
compared to 25m.

To convince you that the systematic errors
due to choice of hadron used to set the scale
of the strange quark are now a dominant source
of error I compare the various estimates using
the LANL data[12]. We find that, in the M5
scheme at 2 GeV, m, = 257 = 129(4) MeV us-
ing Mg, ms = 151(15) MeV using Mg-, and
me = 157(13) MeV using My. Note that the lat-
ter two estimates give m,/mM ~ 30, which is much
closer to the “Next Order” prediction of yPT.
The larger errors in this case reflect the fact that
on the lattice masses of pseudoscalar mesons are
measured with much better statistical accuracy
than those of vector mesons.

10. CONCLUSIONS AND COMING AT-
TRACTIONS

The analysis of various quenched quantities
show that the parameter § characterizing the
hairpin vertex in the 5’ propagator lies in the
range 0.1 — 0.2. Also, for my; < m,/2 one sees
significant deviations from the lowest order chi-
ral behavior in m2/m,. On the basis of these,
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Figure 8. Comparison of m, extracted using my
and my = 257. The data are for quenched Wil-
son simulations.
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I conclude that extrapolation of quenched data
obtained for my < m,/2 to the chiral limit can-
not be done simply using full QCD formulae for
quantities which have large contribution from en-
hanced logs. For quantities like the matrix ele-
ment of the singlet axial vector current using the
Adler-Bell-Jackiw anomaly, the quenched approx-
imation fails altogether.

The alarmists are busy calculating 1-loop cor-
rections to other quantities to determine what can
be extracted reliably from quenched simulations.
Bernard and Golterman have extended the results
presented at LATTICE93 [46] and calculated chi-
ral corrections to the energy of two pions in a fi-
nite box as derived by Liischer [47]. They find
terms at O(1) and O(1/L?), whose contribution
could be substantial, in addition to modifications
of the O(1/L?) term which is related to the pi-pi
scattering amplitude [48]. Sharpe and Labrenz
have extended the analysis of baryons to include
the A decuplet [49]. Booth [50] and Zhang and
Sharpe [18] have calculated corrections to heavy-
light meson propertieslike fp and Bg. These new
results and more data should provide a clearer
picture of what is possible with quenched QCD
by LATTICE 95.

In the calculations of light quark masses we

need to understand the factor of two difference
between the quenched Wilson and staggered data.
On the other hand, the quenched staggered data
is consistent with the n; = 2 Wilson and stag-
gered data. The analysis presented here leaves
open the question — is the agreement between
quenched Wilson (and Ofa) improved SW ac-
tion) data with the phenomenologically favored
estimates of 7 (or equivalently m,) fortuitous
and an artifact of strong coupling? If so, then
the ny = 0,2 staggered and ny = 2 Wilson data
give an estimate of 77 that is 2 — 3 times smaller
than the commonly accepted phenomenological
value. Using mg+« or mgy to extract m, gives a
~ 20% larger value than that obtained from myg,
and provides information beyond the lowest order
xPT result m, = 25/. The statistical errors are,
however, larger in this case.
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