
ANL/EP/CP--7 8013

DE93 004192

GENEIATIONOF COVA_ANCEDATAUONG
VALUESFEONA SINGLE SET OF EXPERIEENTS

DONALDL. SMITH
Bngineerin9 Physics 9ivision, Argonne Na_ional LabOratory

9700 South Cans Avenue, Argonne, Illinois 60499, U.S.A..

ABSTRACT _

Modern nuclear data evaluation methods demand detailed
uncertainty information for all input results to be
considered. It can be shown from basic statistical
principles that provision of a covariance matrix for a

set of data provides the necessary information for its
proper consideration in the context of other included
experimental data and/or a priori representations of the
physical parameters in question. This paper examines how

an experimenter should go about preparing the covariance
matrix for any single experimental data set he intends to
report. The process involves detailed examination of the
experimental procedures _ identification of ali error
sources (both random and systematic), and consideration
of any internal discrepancies. Some specific examples are
given to illustrate the methods and principles involved.

1. Introduction

A collection of measured physical parameters is of limited value
unless some specification is made of the associated errors.t However,
mere specification of total errors for individual quantities from the
collection is generally inadequate because various components of these
errors can have origins common to more than one member. This important
information must be conveyed. Provision of useful, reliable error
information for his experimental results clearly places rather heavy
demands upon an experimenter to understand and document the results,
thereby revealing the intimate details of his work. Of course, such
effort is clearly beneficial to the community of his peers and to
posterity which must eventually pass judgment on the work. The
objectives of this paper are: i) to indicate the significance of
covariance information, ii) to explore the statistical origins of error
formalism, iii) to discuss the details of providing such information,
iv) to offer some suggestions for simplification of the process, and v)
to touch upon some problem areas, e.g., discrepancies.

2. Vhy Covariance Information is Required

The purpose of providing error information is, quite simply, to
quantify the confidence to be accorded to each data point of a set and,
thereby, establish how it is to be weighted in various analyses which
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incorporate these data (e.g., in evaluations). If we possess estimates
for the mean values and a covariance matrix for a set of physical
quantities (i.e., the "results" of an experiment and their "errors"),
then a fundamental principle of information theory2 tells us that we are
justified in proposing a normal (Gaussian)probability distribution to
describe our current state of understanding of these physical
quantities. This is a convenient result since Gaussians are simple and
widely accepted localized distributions for expressing knowledge of
physical quantities. Finally, there are philosophical justifications for
considering errors: "..if a man will begin with certainties, he shall
end in doubts; but if he will be content to begin in doubts, he shall
end in certainties..." (Francis Bacon, Novum Organum), and ".... it is
only in the realm of doubt that we engage in the pursuit of truth..."
(Mortimer Idler, Six Crea_ Ideas).

3. Some Basic lttributes of leasurable Parameters

The entity in question should be sufficiently well defined to be
acceptable as worthy of determination (e.g., speed of light, neutron
total cross section of i2C at 2.75 MeV, monthly income of a governor from
one of the 50 U.S. states, height of male U.S. citizens over age 20,
etc.). All measurable parameters belong to one or the other of the
following two categories: i) the quantity itself has natural variance
(e.g., the weight of a Valencia orange, the height of male citizens of
Paris, France, with ages exceeding 30 years, etc.) or it is assumed to
have a precise and immutable value, except possibly on a cosmic time
scale (e.g., mass of the proton, speed of light, reaction cross
sections, etc.). The physical parameters with which we are concerned
belong almost invariably in the second category. Regardless of the
category to which any measurable quantity might belong, the process of
measurement introduces dispersion in the outcomes and, therefore,
uncertainty in our knowledge of that quantity.

4.. Statistical Considerations for a Single Parameter

Let p be a single me'asurable quantity. We suppose that outcomes
from measurements oi p are governed by the univariate probability
function f_. Furthermore, we consider f to be normalized, i.e.,
_f(p)dp = 1. Here, and in all following equations, we assume that
integration extends over the range of possible values of the variable(s)
of integration. The quantity <p> = _pf(p)dp is the mean value. We assume
that the value Pe from a single measurement of p is an approximation to
<p>, thus, <P> _ Pe. If f is fairly localized, this is the only
reasonable assumption we can make when no other data are available. The

variance is given by var(p)= 1(p-<p>,,)2f(p/,dp. Then, _p = [var(p)]1'2 is
the standard deviation, i.e., the error or "uncertainty" we should
attribute to our measurement. Since f is generally not known, we need to
estimate _p too. Let _e be that estimate, thus, Cp _ _e. Based on this
available information, Pe and Ce, _e are justified, from information
theory, in supposing that f(p) _ exp[-(p-pe)2/(2_e2)]/(2_O'e2) 1'_ is our
best possible choice for f. Knowledge of f can be refined by acquisition
of additional data and applications of Bayes theorem.
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5. Statistical Considerations for Several Parameters

Let R be a collection of n measured quantities, with f as the
corresponding multivariate probability function governing the
measurement process_. Again, assume f is normalized, i.e., _f(m)dm = 1.
The quantity <Pi> = _pif(m)dm, [i=l,n], defines the mean value for the
i-rh component of m. A single experiment yields me =-_ei,_e_-,...,Pen).
Thus, <Pi)n Pei is the only reasonable assumption when no other data
are available to consider, ice are then led to examine the quantity

var(pi) = <(pi-_<pi>)_2>= ](pi-<pi>.)2f(m)dm,[i=1.,n]. Then, ¢pi.=
[var(pi)_l 2, [i=l,n], defines the i-th .standa_r_d. deviation. For the
multivariate case, we also have to consider the i,j-th cov_nce, i.e.,
cov_pi,Pj) - <(pi-<Pi>)(Pj-<Pj>)> --](pi-<pi.>.)(pj-<pj>)f(p_)dm,[i,j=l,n;
i_j_. Then, the n x n array of elements,Vpij = <(Pi-<Pi>)(pj-<Pj>)>,
[i,j=1,n],definesthe variance-covariance(or simply _cov.ariance)matrix
V_p.lt provides comple_ "uncertainty"informationfor m. Likewise,the
n x n array of elements. Cpij = Vpij/(VpiiVpjj) t'2 , [i,j=l,n], defines
the correlation matrix Cp. Note that Cpii = _, [i=l,nJ. Since f is not
known, we need to estimate V_p corresponding to our single experiment
which produced me. Let V_ebe that estimate. Correspondingly, one obtains
the estimated correlation matrix. Thus, V_pu V_e and Cp u Ce. Based on
this available information (me and V_e, as best estimates of <m> =
(<Pl>,<P2>,...,<Pn>) and V_pfrom one experiment), it is suggested that

f(__) _ (2_)'n'2[det(Ve/_'l_2exp[-(1/2)(_-me)+V_e'l(m-me)J, directly from
information theory ( . implies matrix transposition). Knowledge of f
can be refined by acquisition of additional data sets and applications
of Bayes theorem. The emphasis in this paper is on procedures for
estimating V_e for a single data set. Attention is given primarily to
those physical considerations which govern the estimation procedure, but
the mathematical principles which must be observed are also indicated.

6. Law of Error Propagation

Let x be a collection of q measurable quantities, with a q x q
covariance matrix V_x. Then, let m be a collection of n derived
quantities based on x_ namely, pi = pi(x), [i=l,n]. Finally, let Tki -
OPi/OXk, [i=l,n; k=l,q]. These elements form a q x n matrix T. Then,

= !'v_=! yields the covariance matrix for m in terms of that for x_.e elements of T_ are sensitivity coefficients. The expression which
relates Vp and Vx is called the Law of Error Propagation. Actually, This
transformation of V_x to Vp. is based upon an assumption that the
distribution function for x_ is quite well localized and, thus, that a
Taylor series expansion of pi as a function of x_ can be truncated beyond
first order, i.e that 5Pi u _k=l,q Tik_Xk + 0(2), with 0(2) terms
being negligible."Itis very importantto keep in mind the fact that the
relationshipbetween p and x has been linearized,when consideringerror
propagation. For very large errors, a different approach based on
transformation of probability would have to be considered. Such
transformationsare difficult to do in analytical form for all but the
simplest cases, but they can be readilyhandledby Monte Carlo methods. J
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7. Derivation of a Basic Formula Used in Constructing Estimates of
Covariance latrices for Sets of leasured Data

Suppose that a particular experiment can be characterized
completely by a collection x of q measurable quantities (distances,
masses, detector yields, calibration parameters, etc.). It is important
that these be viewed as the most elementary quantities of the
experiment, not higher-level, derived parameters (e.g., cross sections).
Let h be the corresponding covariance matrix. Then, let _ represent the
derived quantities (e.g., cross sections) that are functionally related
to x, i.e., pi = pi(x), [i=l,nJ. From error propagation we have that
V_p=-T_.hT_, as described above. Ideally, all the components Xk of x
would be independent, yielding in a diagonal h. For practical reasons,
this is seldom observed. However, it is frequently the case (either
rigorously or to a good approximation) that x can be partitioned into w
distinct subvectors Xr, [r=l,w], such that x = (x_l ,x_2,... ,Xr ),
and that these X_r can be treated as mutually independent4."T'h'es_W w
subvectors correspond to distinct attributes of the experiment. For
example, typical independent attributes of a nuclear experiment are
detector calibrations, geometry factors, sample masses, etc. The
partitioning of x leads to a corresponding partitioning of V_x:

P

hl 0
h2

h = ,** •

V_xr
¢ B •

0 hw

Thus, V_x consists of submatrices V_xr (which are not necessarily
diagonal) situated along its diagonal, and zeros elsewhere. Similarly, T_
can be partitioned into submatrices Tr, which correspond to the V_xr, and
the remainder which is essentially without influence.

As a consequence of these assumptions, we obtain for Vp the
expression V = T_+L T_ = _r--1,w T_r+V_xrTr. It follows that the elements of• mp

V_pare given by Vpij = _r-l,w (T_r+hrT__r)ij, [i,j=l,n]. Let us denote eir
as the partial error in the derived quantity pi due to the attribute
r, [i=l,n; r=l,w]. This error has the same units as Pi. If Pi._ O, we
can express the corresponding fractional error as fir = eir/abs(pi) and
the percent error as lOOfir. Note that eir _>O, always. Furthermore, it
is useful to define the parameter Sijr = (T_r.V_xrTr)ij/(eirejr), so long
as both eir > 0 and ejr > 0 (as is usually the case). If either equals
zero, assume that Sij r = _ij _Kronecker Delta). Clearly, all the Si_r
are dimensionless quantities. _o, we arrive at the very useful formula
Vpij = _r-l,w Sijreirejr [i,j=l,n]. This formula permits us to construct
quite readily the covariance matrix, Vp, from a table of partial errors
eir which are associated with each derived value pi, [i=l,_n], and
correspond to various independent experimental attributes, r, [r=l,wJ.
Ve are led here to approximate only to the extent that very rarely are
complex experiments perfectly resolvable into such distinct attributes.
By careful choice of _, such approximations can usually be justified.



8. iicro Correlations and lacro Correlations

The n x n matrices, Sr, consisting of the parameters Sij r,
[i,j=l,n; r-l,w], clearly provide all correlations between the partial
error components eir, [i-l,n; r=l,w]. For lack of a better term, these
have been designated as micro- correlation matrices 4. The n x n
correlation matrix, Cp, derived from V_p, describes the correlations
between the total errors of the parameter set R. For convenience, this
is denoted as the macro-correlation matrix4. Given the partial errors,
eir, [i=l,n; r=l,w], and the micro-correlation matrices, Sr, [r=l,w],
derivation of V_pand Cp is a straightforward, objective application of
the formulas derived e_rlier. Subjectivity- when it becomes unavoidable
- enters only into the estimation of eir and Sr. In general, estimation
of the component errors eir, [i=l,n; r=l,w], is far less difficult than
estimation of the correlations appearing in the matrices S_r [r-l,w]. So,
how sensitive are the elements of Vp to ambiguities in these Sr? k study
of this effect has been reportedT. It was found that the sensitivity
decreases with increasing w according to the factor w-1'2, i.e.,
consistent with the Law of Large Numbers from statistics3.

9. Some Fundamental Constraints on Generation of Covariance |atrices
for Data Sets

The method described here aims at providing for an objective
determination of rp, based on detailed analysis of partial errors and
their correlations. However, no matter how V_pis determined, it must end
up being a positive definite matrix, e.g., _t cannot predict zero total
error for any single data point of a set or lOOZ correlation between the
total errors of any two particular data points. Therefore, Vp must be
tested for positive definiteness after its generation. It follows that
when V_p is positive definite, then Cp is also. However, individual S_r
need no___ttbe positive definite. As an example, consider three data points
(n=3) corresponding to mea.ourements of a particular neutron activation
cross section at three different energies. The activities are all
measured by observing the same emitted gamma ray with one detector.
Clearly, the detector calibration is the source of a fully correlated
error component for these points. Thus, Si j = 1 for this particular r
and [i,j=l,3]. Such a matrix S_r is obviouslyrnot positive definite.

10. The Need for a lathematical iodel of an Experiment as a Condition
for the Estimation of a Data Covariance |atrix

A mathematical model of the experiment is necessary in order for
the experimenter to be able to identify the q-fold collection of
characteristic parameters, x_, even if some of them remain implicit and
not directly manipulated. Only if such a model is developed can the
distinct, and presumably independent, attributes of the experiment be
identified. These attributes are characterized by w subvectors Xr. A
model is required in order to consider (possibly implicitly) the
relationships Pi = pi(xl,x2,...,Xr,...x_w), [i=l,nJ. In practice, there
is usually a great deal of variability from one attribute to another in



regard to an experimentalist's understanding of the quantitative
dependence of each pi on the individual Xr for his measurements. For
example, if x_l relates to detector calibration, knowledge of the
functional relationship between any pi and xx is generally very
explicit. However, if x_2 relates to neutron multiple scattering, the
functional relationship to any ?: will likely be virtually impossible to
express. Then, estimation of the partial cross errors ei2, [i=l,n], and
the micro-correlation matrix $2 will be far more subjective.

11. Relative Covariance llatrix

Let V_pbe a covariance matrix for the data set _. Suppose that all
pi > O, [i=l,n]. Then, we can define the relative covariance matrix, ltu,
by the formula Vpij = pipjRpij, [i,j=l,n]. From the basic expression fbr
deriving Vpij, we have that Rpij = _rfl,w Sijr (eir/pi)(ejr/pj). The
quantity _ir = eir/pi is the fractional error in Pi. We couId aIso work
with percent errors, namely, lOOfir. Clearly, Cp can be derived directly
from Rp. Thus, Cpij = Vpij/(VpiiVpjj) 1t2 = Rpij_(RpiiRpjj) lt2 , since the
factors Pi and pj cancel. There is a very important reason why it is
preferable to work with Rp and Cp rather than Vp and Cp. It has to do
with an issue that has acquired the label "Pe_lle's _ertinent Puzzle
(ppp),,5. It will be mentioned briefly in Section 18 of this paper.

12. Requirements for the Tabulation of Errors and Techniques for
Reducing the Volume of Error Information to be Recorded

It is suggested that what ought to be required of an experimenter
who reports an individual data set is that he provide a table of
estimated error components (preferably fractional), as follows:

fll f12 "'" flr ... flw_

f21 f22 "'" f2r ... f2w_

fil li2 ... fir ... fiw_

fnl fn2 ... f:r ... fnw,

plus a set of w estimatedmicro-correlationmatrices, i.e.,

Sllr Sl2r ... Sljr ... Slnr

S21r 822r ... S2jr ... S2nr [r=l w].
Silr Si2r ... Sijr ... Sinr

Snlr Sn2r • • • Snj r • • • Snnr,

Given this information,Rp and Cp can always be derived when needed and,
if demanded, also Vp through knowledge of _. There are opportunitiesto
reduce the number ot values fij, [i,j=l,n], and Sijr, [i,j=l,n; r=l,w],
that need to be reported. These should be exploited. Let us consider two
brief examples. First, Suppose n=lO and w=5. Also, suppose that for r=3,
li3 represents a detector calibration error of 5Z, regardless of the



data point, [i=I,10].Then, fi3 = 0.05, [i=i,lO].One can simply express
this fact. Actually_ explicit tabulation of each fir, for fixed r,
i=l,lO], is necessary only when these errors are distinct for each i.
ertain blocks of data points might have equal errors; e.g., li2 = 0.04,
[i=1,3]; fi2 = 0.05, [i=4,6];fi2 = 0.08, [i=7,10].Next, consider the
situatlonabove where _is = 0.05, [i=I,10].Suppose this error source is
attributable to a common origin which afflicts each data point in a
lOOZ-correlatedmanner. Then, Sij3 = I, [i,j=l,10].Obviously,there is
no need to write down an explicit matrix consisting entirely of "ones"!
A similar approach is sometimes used to represent components of
covariancematrices in the widely applied ENDF formatsS.

Let us discuss a somewhat more detailed example to illustratethe
present approach. Ve shall consider providing errors associated with a
Ge photon detector calibration procedurez. The calibration is carried
out using standard point gamma-ray sources situatedat a distance d _ 20
cm from the Ge detector.The formulas (model)used in this analysis are
C = ABe and A = Aoexp(-_t), where C is the gamma-ray peak count, B is
the branching factor, e is detector efficiency,A is the source activity
at the time of the count, Ao is the same activity at the time of source
calibration,_ is the decay constant and t is the time elapsed between
the source calibration and the detector calibration. The sources
employed and their activities are: 80Co [3.193x IOS (_ 0.9Z) on 1
February 1984], _szCs [1.565 x lOS (_ 1.5Z)_on 1 January 1985], and
lS2Eu [.4 208 x 105 (, 1.5Z) on 20 April 1979j. Twelve gamma-ray lines
were measured and analyzed from these sources, each identified by a line
number (LN). Here are the specifics:

Source LH Gamma-ray Energy (keV) Gamma-ray Branch (Z)

80Co 1 1173 100.0
2 1333 i00.0

tszCs 3 662 85.0
152Eu 4 245 7.42

5 344 26.4
6 444 3.08
7 779 13.0
8 867 4.16
9 964 14.5

i0 1086 11.8
11 1112 13.6
12 1408 20.7

Using this information and the observed yields of the full-energy peaks
it is possible to deduce the efficiency of the detector at each of the
indicated energies. The following table provides the various errors
needed for a complete analysis. Associated with each data point is the
line number (LN), efficiency multiplied by 104 (Efr), four error
components (r = 1 to r = 4), and total error (TotErr). These errors are



given in percent:

LN Efr r = 1 r = 2 r = 3 r = 4 Tot Err

1 3.089 0.4 0.0 0.9 0.0 1.0
2 2.783 0.4 0.0 0.9 0.0 1.0
3 5.016 0.3 0.0 1.5 0.6 1.6
4 12.69 0.2 0.I 1.5 2.1 2.6
5 9.278 0.1 0.I 1.5 1.5 2.1
6 7.337 0.4 0.i 1.5 1.6 2.2
7 4.315 0.3 0.1 1.5 1.7 2.3
8 4.031 0.4 O.l 1.5 1.3 2.0
9 3.681 0.2 0.i 1.5 1.6 2.2

I0 3.320 0.3 0.i 1.5 2.2 2.7
II 3.284 0.2 0.i 1.5 1.5 2.1
12 2.683 0.2 0.i 1.5 1.3 2.0

The correlations involved can be expressed as follows: the statistical
error in C is uncorrelated (r = I), the half-life uncertainty is IOOZ
correlated for all lines from the same source and uncorrelated otherwise
(r = 2), the uncertainty in Ao is IOOZ correlated for all lines from the
same source and is uncorrelated otherwise (r = _, and the uncertainty
in B is uncorrelated for all lines from dif_rent sources and is
effectively uncorrelated for 152Eu lines because the errors are largely
due to peg yields and, thus, are mainly statistical (r = 4). Combining
this information according to the standard prescription given in Section
7 leads to the following macrocorrelation matrix:

1 2 3 4 5 6 7 8 9 i0 II 12

1 1
2 .84 1
3 0 0 1
4 0 0 0 1
5 0 0 0 .41 1
6 0 0 0 .39 .48 1
7 0 0 0 .38 .46 .44 1
8 0 0 0 .43 .52 .50 .49 1
9 0 0 0 .40 .48 .46 .45 .51 1

10 0 0 0 .33 .40 .38 .37 .42 .38 1
11 0 0 0 .41 .50 .47 .46 .52 .48 .40 1
12 0 0 0 .44 .53 .51 .49 .56 .51 .42 .53 1

13. 8bjective Estimation of Errors and Correlations

Suppose we choose to fit an empirical curve to the set of detector
efficiency values, with associated errors and correlations, as given in
Section 12 above. The least-squares fitting process will generate a
covariance matrix for the fitted parameters3. Through error propagation,
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errors and their correlations for derived values at arbitrary energy
points along the curve can be deduced objectively. For example, if we
decide to _it the formula In e = al + as In Eg (where e if the
efficiency and E_ is photon energy) tO the calibration data given in
Section 12, and _erive efficiency (Efr) from the fitted curve at E_ =
300, 500, 700, 900, 1100 and 1300 keV, we obtain the following resultS:

ID Eg (keV) Efr (x 104) Total Error (_)

1 300 10.28 1.3
2 500 6.552 1.0
3 700 4.870 0.8
4 900 3.902 0.7
5 1100 3.270 0.7
6 1300 2.822 0.8

Associated with this solution is the error correlation matrix:

1 2 3 4 5 6

1 1
2 .96 1
3 .84 .96 1
4 .65 .83 .96 1
5 .44 .67 .86 .97 1
6 .26 .51 .74 .90 .98 1

Clearly this approach offers a relatively objective means for estimating
errors and correlations for these derived physical results.

14. Subjective Estimation of Errors and Correlations

Often, errors and their correlations can be estimated only on
rather subjective grounds. Experience is an important consideration
here. Let us consider the fairly common situation where we encounter a
number of small error components of complex origin. Then, it may suffice
to assign as the correlations one or more of the following values, based
on qualitative considerations:

Sijr* Strength

1.00 Full correlation
0.75 Strong correlation
0.50 Moderate correlation
0.25 Weak correlation

0 Negligible correlation

* Negative values imply anti-correlation.
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Another frequently observed occurrence can be illustrated by the
following example. Let us suppose that a set of neutron activation cross
sections has been measured in the range E = 2-10 MeV. Each data point
has an uncertainty due to multiple scattering of ~ 3_. It is reasonable
to assume that the error correlation is strong for neighboring points

in neutron energy) and_progressively weaker if the energ_ separation is
arge. It is not unrealistic to assume that Sijr ~ abs(Ei-Ej)/(lO-2).

This ad hoc assumption can be defended only in that it is "plausible"
under the circumstances.

15. Some Typical Attributes of Neutron Nuclear Data Experiments

It was pointed out earlier that one needs to consider for each
experiment the various independent or nearly independent attributes
which contribute error to the results. In the case of nuclear data
experiments, the following are commonly considered: i) event statistics,
ii) background corrections, iii) event determination procedures, iv)
event determination calibration standards, v) sample assay parameters,
vi) decay activity half lives, vii) decay activity branching parameters,
viii) elemental isotopic abundances, ix) geometry factors, x) neutron
source parameters, xi) absolute or relative neutron fluences, xii)
neutron absorption, xiii) neutron scattering, xiv) absorption and
scattering of secondary radiations, and xr) standard cross sections (for
ratio measurements). There are many other factors, often quite specific
to particular measurement techniques, which might have to be considered
in individual experiments. It is up to the responsible experimenter, who
ought to be well informed about all the details of his measurement
procedures, to insure that each "significant" attribute of his
experiment is considered in the modeling and error analysis.

16. The Virtues of ledundancy and rata tveraging

Vhenever possible, it is worthwhile incorporating as much
redundancy into an experiment as time and circumstances allow. For
example, the cross section at a particular energy might be measured
several times, perhaps with some variations of the experimental details
(sample size, geometry, etc.) in order to test for reproducibility, to
uncover systematic error sources and improve statistical accuracy.
Multiple values for a single physical quantity generally ought to be
averaged to produce a single "best" number for reporting purposes. A
procedure for doing this, with full consideration of data covariances,
has been developed and reportedS. The method involves transformation
from data vector _ to a "collapsed" vector _ by least squares, and
application of the law of error propagation, Vy = _.[x_.

The process of data averaging can be thwarted by unresolved
discrepancies. Actually, this procedure forces upon the experimenter the
necessary discipline to face up to and, ultimately, either resolve the
discrepancies, increase the errors or reject certain values. This issue
is discussed in the next section.
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17. Data Discrepancies

Discrepancies in data are the nemesis of all research endeavors.
Evaluators must deal routinely with discrepant data from diverse
experiments. For all the concern, there are no foolproof techniques for
handling discrepant data. Here, we are involved with discrepancies
amongst data from a single experiment. Discrepancies cannot arise in an
individual experiment unless enough data are acquired to signal the
presence of a systematic deviation of some result(s) from what was
anticipated. For example, repeated measurements of a particular quantity
under fixed conditions may lead to a flyer . Another possibility is that
measurements of a physical parameter with systematic changes of a
variable, e.g., cross section versus energy, may suddenly produce
anomalous departure from a smooth curve trend. Discrepancies arise from
two basic origins: i) systematic experimental errors or blunders_ or ii)
a real, but previously unanticipated physical phenomenon (e.g.,
discovery of an unexpected resonance). It is hard to identify the real
cause in any single instance. Further investigation is usually required.

There are several ways to deal with a discrepancy. In order of
descending preference they are as follows: Method 1: Identify and
eliminate the source of the discrepancy. _ethod 2: Increase the error of
the afflicted data point if the origin of discrepancy is elusive. _ethod
3: Average a collection of comparable values if several are available -
including the discrepant value - and increase the error of the average
accordingly. This effectively "dilutes" the effect of the discrepancy.
_ethod 4: Discard the discrepant value outright. The hazard of this
method is that the "discrepancy" could be indicative of new knowledge

e.g., a previously unsuspected resonance). Method 5: Keep the
iscrepant value and live with the full consequences wit-bout dilution.

The best way to search for the source of discrepancy (if there is
one) is to examine all of the measured or standard parameters which
enter into the derivation of a result, in the context of the model which
is employed to compute this result and/or estimate its error. This
approach will eliminate many possibilities and focus attention on a few
critical areas of the experiment. The "detective" work just described
may narrow the problem to a single aspect of the experiment, yet still
not resolve the issue. Nevertheless, the experimenter will be in a
better position to judge which of the Methods 2-5 might best be invoked
in order to deal with the problem.

Vhen a discrepancy is not outrageous, and there are several
comparable data values available, then _ethod 3 (averaging the results
and enhancing the error) is probably the best practical approach,
whenever the origin of the discrepancy cannot be identified. For
example, suppose there are five comparable measurements of count yield
(with statistical error) as follows: Count 1 - 10250 • 101.2; Count 2 -
10138 • 100.7, Count 3 - 9987 • 99.9, Count 4 - 10649 • 103.2; Count 5 -
10069 * 100.3. Count No. 4 looks discrepant in this data collection. Let
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us average the results using two methods. Method 3: <N> = 10213 • 45.2
(0.4_), (x2/f) = 6.43 (f=4), "enhanced" error = 114.6 (1.1Z); Method 4:
<N> = 10110 • 50.3 (0.5_), (X_/f) = 1.22 = 1 (f=3), "enhanced"_=
55.6 (~0.5_). Here, <N> signifies average counts and (x_/f) is the chi
square per degree of freedom, a test of statistical significance. Both
results are consistent with the errors of the majority of the data
points. However, Method 3 is the most most conservative approach.

18. The Issue of "Peelle's Pertinent Puzzle" '

Under certain conditions, covariance matrices generated directly
_rom experimental data lead to anomalous results when employed in
analyses involving the least squares method. A symptom of the problem is
the emergence of values that are "too low" in evaluations of such data.
_he problem is particularly acute when there are seriously discrepant
data but, in fact, is present to some degree under any circumstances.

For practical reasons, there is a great advantage in expressing the
uncertainties for a set of experimental data in terms of a relative
covariance matrix. This provides an evaluator or other user of such
information with possibilities for _djusting input values (to account
for revisions in the experimental data for objective reasons as well as
subjective ones) in order to circumvent discrepancies. Vith relative
covariance matrices, this can be done without altering the fundamental
uncertainty information content provided by the author of the data set.

One empirical approach which has been suggested to deal with the
"Peelle Puzzle" issue is to alter _ and, thus, rp, but not Rp. This may
be required if their are hidden variables involved in a transformation
of the raw data to derived parameters (with loss of information)5.

19. Summary

The formalism needed to generate the covariance matrix for an
experimental data set follows from general statistical principles and
application of the Law of Error Propagation. In practice_ it is
essential to develop a mathematical model for the experiment and
identify the essentially independent attributes of the measurement
process. Certain aspects of every experiment can be analyzed quite
rigorously (statistics, calibration standards, etc.) while others can be
approached only with considerable subjectivity (radiation absorption and

scattering_ etc._. One separates the various attributes of theexperiment and do_s the best one can to attend to each distinct issue.
There are certain advantages to dealing with relative covariance

_, in thismatrices, Rp_ rather than the explicit covariance matrices_ a users ofcontext. Discrepancies are the nemesis of both producers
nuclear data. When they occur, it is best to try to identify and
eliminate them. If this is not possible, then there are some compromise
approaches that can be used to dilute the negative impact.
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