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Transport in Gyrokinetic Tokamaks

H. E. Mynick and S. E. Parker
Plasma Physics Laboratory, Princeton University
P.O. Box 451
Princeton, New Jersey 08543-0451, U.S.A.

Abstract

A comprehensive study of transport in full-volume gyrokinetic (gk) sim-
ulations of ion temperature gradient driven turbulence in core tokamak plas-
mas is presented. Though this “gyrokinetic tokamak” is much simpler than
experimental tokamaks, such simplicity is an asset, because a dependable
nonlinear transport theory for such systems should be more attainable. To-
ward this end, we pursue two related lines of inquiry. (1)We study the
scalings of gk tokamaks with respect to important system parameters. In
contrast to real machines, the scalings of larger gk systems (a/p, 2, 64) with
minor radius, with current, and with a/p, are roughly consistent with the
approximate theoretical expectations for electrostatic turbulent transport
which exist as yet. Smaller systems manifest quite different scalings, which
aids in interpreting differing mass—scaling results in other work. (2)With the
goal of developing a first-principles theory of gk transport, we use the gk
data to infer the underlying transport physics. The data indicate that, of the
many modes k present in the simulation, only a modest number (Ny ~ 10)
of k dominate the transport, and for each, only a handful (N, ~ 5) of cou-
plings to other modes p appear to be significant, implying that the essential
transport physics may be described by a-far simpler system than would
have been expected on the basis of earlier nonlinear theory alone. Part of
this analysis is the inference of the coupling coefficients Mjy, governing the
nonlinear mode interactions, whose measurement from tokamak simulation
data is presented here for the first time.
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I. Introduction

One of the outstanding problems in magnetic fusion research is the de-
velopment of a theory of tokamak transport which reliably predicts experi-
mentally observed transport levels. It is generally accepted that ‘anomalous
transport,’ i.e., the disparity between observed transport and neoclassical
collisional transport,!™3 is due to turbulent plasma fluctuations, and since
the early ‘70s a great deal of effort (see, for example, Ref. 4) has been
expended to develop a dependable theory of tokamak turbulent transport.
Despite some successes, however, this goal has as yet proven elusive, due
to limitations on diagnostic information, and to complexities of both the
experiment and of turbulent transport theories.

Powerful new tools in this endeavor are gyrokinetic (gk) simulation
codes.’> These can now simulate a full toroidal volume® with up to a few
million particles, and so contain much of the physics of real tokamak ex-
periments. Both the real and numerical ‘experiments’ are large statistical
systems, with very similar particle dynamics, and are therefore capable of
supporting a similar set of fluctuations. However, the gk simulations are
also far simpler than real experiments — they contain no atomic physics,
usually assume adiabatic electrons and a single ion species, support only
low—frequency electrostatic perturbations — and are also far simpler to diag-
nose. Thus, the development of a reliable theory of transport in gyrokinetic
tokamaks would represent a sizeable step toward the ultimate goal of such
a theory for real tokamaks, but should be more attainable. In this paper,
we adopt this goal, using the gk data to guide the development of a trans-
port theory, in testing the validity of assumptions, suggesting satisfactory
approximations, etc.

We pursue two related lines of study, each with its counterpart in what
has been done for real experiments: (1)studies of the scalings of the trans-
port with important plasma parameters, and (2)studies aimed at obtaining
a valid first~principles nonlinear theory describing the transport. Regarding
line (1), the gk scalings provide an intermediate ‘data point’ between exper-
imental scalings and theoretical predictions, giving added insight into the
origins of existing theoretical/experimental differences. Addressed here, and
touching on many of the current issues of interest in tokamak transport, are
the scaling of transport with minor radius r, with temperature T, with mag-
netic field strength B, with ion mass M;, and with safety factor ¢ (or current
I,). And regarding line (2), probably the major obstacle in obtaining a cred-



ible nonlinear theory is finding the saturated fluctuation amplitudes. For
highly idealized problems such as the Hasegawa-Mima’ and Terry-Horton®
equations, where the linear and nonlinear coefficients Ly and Mpp, govern-
ing the dynamics are known and fairly simple, reliable predictions for the
saturated spectrum can be found from numerically-intensive direct simu-
lation®10 or statistical closures.ll12 However, for the full kinetic toroidal
problem, where accurate evaluation of even the linear coefficients requires
extensive numerical computation, the complexity of the coupled nonlinear
equations generally results in drastic assumptions or approximations being
made, making the resultant transport coefficients rough estimates at best.
Here, we show that for gk tokamaks, the data indicate that major simplifica-
tions in the full complexity of these equations occur, which should permit a
greatly reduced description of the essential transport physics. A major part
of these simplifications occurs in the character of the nonlinear coupling co-
efficients Mpp,, whose numerical measurement from the gk data (along with
the linear coefficients) is presented for the first time in this work.

The paper is organized as follows. In Sec. IT we summarize the gk simu-
lation method used, introducing the needed notation and underlying equa-
tions, and present some characteristic simulation results. Sec. III begins the
analysis of gk transport, discussing the radial scaling of the heat flux Q,
its harmonic decomposition @ = ¥, @k, time-dependence, and the relation
between the Qi (t) and the mode amplitudes ¢x(t). Knowing this relation-
ship, what is additionally required for a complete theory of the fluxes is a
description of the ¢y in the saturated steady-state, governed by the non-
linear physics. This is studied in Sec. IV, where the coupling coefficients
Mjp, are found, and a reduced description of the mode dynamics is dis-
tilled. The My, are used to infer the energy transfer among the modes in
the reduced description. Global scalings are investigated in Sec. V, where
the gk-scalings with T, B, M, and g are obtained, and compared with an-
alytic and experimental scalings. A discussion summarizing the findings of
the earlier sections is given in Sec. VI.

II. Gyrokinetic Simulation

We briefly describe the full-volume toroidal simulation method used for
this study. A fuller account has been given earlier.®!® The code uses a
fully nonlinear §f-method!3 in an azimuthally symmetric volume with a
square poloidal cross—section, of width L, height Ly = L, and with major




radius R = Ry at the center of the box (Fig. 1). The box is parametrized
by x = (z,y,(), with { the toroidal azimuth, and with £ = 0 = y at the
magnetic axis. The poloidal plane may also be parametrized by the usual
minor radius r = /22 + y? and poloidal azimuth §. The magnetic field
lies on circular surfaces r = constant, with a quadratic model for the safety
factor ¢(r) = go + Ag(r/a)?, where a ~ L. /2 at the plasma edge.

A particle moves in a 6—dimensional phase space z, parametrized by z =
(R, vy; 6, 1), with guiding—center position R, parallel velocity v);, magnetic
moment g = Mv2 /(2B), and gyrophase 5. However, as usual, 6, does
not enter the gk equations of motion, so that its conjugate momentum p is
invariant, and the time-evolution of these two can be suppressed. Assuming
electrostatic perturbations only, the evolution of R and v are given by

-~

. - b
R = 'U"b + -JTJ—Q—- X (M'Uﬁli + IJ/VB + GV’(ﬁ), (1)
9
. 1 . v N
i = —2-(b+ Q—'Lb x &) - (WVB +eVy), (2)

with b = B/b, & = b - Vb the field-line curvature, and ¢ = (@)g, ~
Jo(k1pg)p(R) the gyro-averaged electrostatic potential ¢. Q, = eB/(Mc)
is the gyrofrequency, p, = v, /Qy is the gyroradius, and Jy is the Bessel
function of the first kind.

The Vlasov equation for the evolution of f(R,v),; 1) is given by
8ef +2-0,f =8, +R-8nf + 10y f =0, (3)

where §; denotes a partial derivative with respect to any scalar z, or if z
is vector, a gradient in z-space. Both Z and f may be decomposed into
an equilibrium and perturbed part, z2 = 2o + 2z; and f = fo(z) + 6f(z,1),
where z; are those terms in Egs. 1 and 2 proportional to %, and zg are the
remainder, involving equilibrium fields only. Eq.(3) then gives equations for
foand 8f: 2g-8,fo =0, and

Oi0f + 20 -0:6f + 21 - 0,0f = —21 - Bz fo. (4)

In the simulation Eq.(4) is integrated along the characteristics given by
Egs. 1 and 2 to accumulate 6f = Y ; wi6(z — z;) or, more precisely, the
weight w; of the i** particle.!® f is taken to be a local Maxwellian, with
Orfo = —tk fo, where & = [kn + k7 (v2/(202) — 3/2)], kn(r) = =6, Inng(r),
and kr(r) = -8, InT(r).



The perturbing fields are obtained from solving the gyrokinetic Poisson’s
equation:

A72(1 = To(b))gr = 4m(eiflir + €ener), (5)
with b = (k1pgi)?, To(d) = L(b)e™®, X = (T; J4mnipe?)t/? the ion Debye
length, e; = Z;eq the ion charge, ec = —€g electron charge, n. the electron

density, and 7; = [ dvJofi(z) the density of ion guiding—centers. Only a
single species of ions is followed, and the electron response is taken equal
to 0 for (m,n) = 0, and otherwise as adiabatic: n.; = eodx [Te. (mand n
are the poloidal and toroidal harmonics.) Hence, effects of self-generated
shear flow are not included in this model,'6~!8 nor are trapped electron,
nor electromagnetic effects. The system is essentially able to support only
electrostatic ion temperature gradient—driven instabilities, a useful simplifi-
cation for purposes of analysis.

Some characteristic simulation results are shown in Figs. 2-4. In gk units
[z = z/ps,t = Qqit, E — E[T] (for any energy E), the parameters used are
Ry = 892,a = 64,0 = 1.25,Aq = 3,7 = T./T; = 1, with with &, = 0, and
temperature profile T = Tj exp[—kToLT1 tanh((r — 7o)/ Lr1)], with ko =
1/50, L1 = 20,70 = a/2. [Thus, k7(r) = K70 cosh™2((r — 7¢)/LT1), which
provides the drive for the ion temperature gradient (ITG) instability, peaks
at r = ro.] In Fig. 2 is shown the radially-averaged ion heat flux Q7 versus
time. One notes three phases characteristic of these simulations:(a)an initial
linear growth phase, (b)a phase where Q" nonlinearly saturates and begins to
fall, and (c)a final quasisteady saturated state. Phase—c is the most relevant
to real experiments. Figures 3(a,b) show contours of constant potential in
linear growth phase-a, in poloidal cross-section (a), and in the midplane (b).
Phase-a shows the typical character of the linear modes: radially global,
peaking near radius r = rg, with fixed n (in this case, n = 4), and with
a ballooning character, largest around § = 0, and with the dominant m
changing as one moves radially outward, to satisfy kj = (n+m/q(r))/R =0.
Fourier transforming ¢ over a flux surface, one finds the mode typically
dominated one value of m (and its complex conjugate), sometimes plus one
or two subdominant sidebands, as shown in Fig. 3(c). Thus, labelling the
linear modes by mode index a, one may designate a by the approximate
assignment a — [n,m(r) = —g(r)n], for some chosen flux surface r, which
we choose to be 7 = 7.

In phase—c (Figs. 4), other modes have grown up, breaking up the co-
herent structure of phase—a, but leaving the characteristic scales in both the
radial and poloidal directions qualitatively similar.



III. Transport

For a given r, the flux-surface averaged heat—flux for species s Q,(r,1)
may be written

Q, = v~ / dzi 56 f,(Mv?/2) = V-1 / dR756p,
v, v,
= ZQJ’C) (6)
k

where Qx = i(cks/B)¢_rpr/N} is the contribution of harmonic k to Q,
k = (ko = m/r,k¢ = n/Ro), 8p(r,6,() = N;' Ty pi(r) expi(md + n() is
the perturbed pressure, 75 = £-R; = #- (¢/B)b x V4 is the E x B-portion
of the radial drift velocity, Ny is the number of mesh—points taken over a
flux surface, and [, (...) denotes an integral over a thin toroidal shell V;
centered at 7. An analogous expression holds for the particle flux T, but
with the replacements Mv?/2 — 1, §p — 6n, and pj, — ny, above. The gk
results for the fluxes are quite similar whether computed from the fluidlike
expressions given above, with §p or én first accumulated at each mesh point,
or from the kinetic expression using a direct summation over all particles
within shell V;. Using the approximate assignment a — k(r = rg) for mode
label noted in the previous section, one may replace Yk in the final form in
Eq.(6) with a summation Y, over contributions from each mode a.

We first consider the r—variation of Q. For real experiments, it is well-
known!® that x(r) continues to rise as one moves out toward r = a, in con-
flict with both the Bohm expression x5 = cpp,cs, and the gyroBohm (gB)
estimate xgp = ¢gpKTp2C, Which arises from drift-wave theories. (Here, cp
and ¢gp are numerical factors, whose value is fixed by nonlinear physics.)
For these, the positive dependence on T'(r) (x5 ~ T and x5 ~ T%/2) causes
x(r) or Q(r) = —xnd,T(r) to fall off as r — a, as shown in Figs. 5 (drawn
for cp = 1= ¢4p for the profiles used in the simulations.) Contrasting with
experimental results is the strong resemblance of Q5 and Q¢ to the time-
averaged result Q;k(r) from the gk simulation plotted in Fig. 6. However,
the reason for the radial dependence here is somewhat different from that
for standard drift wave theories for real tokamaks, which typically assume
radially localized perturbations. For these, mixing-length estimates assume
X ~ 7/k2, with v ~ wf = —korcT/(eB). Thus, x ~ xB(xkke/k2), with
kg ~ p;' and the replacements k, — kg for xgB and k2 — kgk for x5. The
falloff toward the edge in this standard argument is thus due to a corre-
sponding falloff in the v/k% of the individual localized modes as r increases.
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In contrast, for each radially global mode a dominating gk transport, one
has a single 7,, but a radially-varying mode amplitude, giving a similar
radial dependence to Q.(r) in Eq.(6).

The global character of the modes implies that knowing their evolution
at » = rq specifies their evolution, and their effect on transport, at all 7.
Thus, henceforth we look at the Qg at r = ro. We consider ion transport,
suppressing species label i. We first rank the Q at r = 7o, Qr, 2 Qx, 2
Qk, > ..., and in Fig. 7 plot the running sum Q; = >3]_; Qx;- One notes
that, of the thousands of k’s which could in principle contribute significantly
to transport, in fact only a modest number Ni ~ 10 of modes account for
most of the full flux Q = Qj—~co. Taking Ni = 12 (6 ¢y plus their complex
conjugates, which contribute equally to the flux), in Fig. 8 we plot (a)the
largest Qik from the gk data versus time, and (b) the corresponding |@%|(2).

The radial dependence having been dealt with, for a complete descrip-
tion of the fluxes one needs two additional ingredients:(1) given the spec-
trum {¢r}, an expression for the corresponding (n,pr) to use in Eq.(6),
and (2) a specification of the saturated steady-state spectrum {¢} corre-
sponding to phase—c of Fig. 2. The latter requires an understanding of the
nonlinear physics, discussed in Sec. IV. The simplest and most widely-used
specification for (1) is the quasilinear flux T'? or Q¥, obtained from using
the linear response for §f in Eq.(6). This yields nsx = —(esdr/Ts)ns09sk
and pyi = —(esPr/Ts)Ps0dsk, With gsk(w) = k2A2K i (w) the linear-response
function for the density [K,x(w) is the linear susceptibility], and g,x(w) the
linear-response function for the pressure. For adiabatic electrons gex = 1.
Expressions for g;; and g;;, are given in Appendix A. Using these, one has,
from Eq.(6)

T, a CI\’Oe Nso s
e,[st;Ta] = —ig’ |¢|2[ k]() (7)

With the approximate evaluatlon of these sketched in App. A, in Fig. 8c
we plot the quasilinear fluxes Qq using the ¢, in Fig. 8b. Comparmg these
with Fig. 8a, one sees that the time-dependence of the fluxes Q is con-
sistent with the quasmnea.r expectation Qg(t) ~ |¢x|?(t). The numerical
disparity Qk /Q ~ 4 here is unsurprising, as the evaluation of g;x and g;x.
used is rather simplified, and is consistent with a parallel disparity in the
ratio 7**/v9% ~ 3 of the analytic to the numerically—found growth rates.
Moreover, as discussed in App. A, while useful for purposes of estimation,
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quasilinear theory omits from the fluxes terms involving the nonlinear re-
sponse which in the nonlinear phases may be comparable to the linear terms
kept.

IV. Nonlinear Physics

As noted in Sec. I, the greatest difficulty in the development of a credible
transport theory lies in understanding the nonlinear physics, which deter-
mines the saturation amplitudes of the ¢. In this section we investigate
what the gk data tell us about this.

We assume that the mode interactions can be described keeping only up
to a quadratic nonlinearity:

1 * 1k
Ot = Lign + 5 > Mip#3d;, (8)
O0=k+p+q
with Ly = —iwg = (9% — iwyk) the coefficients characterizing the linear

response, and with Mp,q = Migp the nonlinear coupling coefficients. Eq.(8)
may be used to describe both weak and some strong turbulent dynamics. As
illustrated in Fig. 9 for n = 2, in the nonlinear phase-c of the simulations,
the half-width dw of the power—spectrum of ¢(r,8,n) is a moderate fraction
of w. This, along with the aderence to the quadratic dependence Qp(t) ~
|¢x|2(2) observed in Sec. ITI, suggests that a weak—turbulence treatment may
be adequate,?’ though perhaps only marginally. From Eq.(8), one notes
that, in addition to the modes ¥ = (k,w;) which dominantly contribute
to transport, there may be modes p (or ¢) which, while their contributions
Qp to Q may be small, are strongly coupled to some k, and are therefore
crucial in determining the saturation level of &, and so must be retained in
a description of the essential transport physics.

As shown in App. A, an analytic expression for the My,, may be ob-
tained from a weak turbulence treatment. Even with simplifications from
employing a local treatment and dropping sideband bounce-harmonics, the
general formal expression shown there is complicated, one example of the
difficulties encountered in obtaining a reliable analytic nonlinear theory. Ac-
cordingly, here we are mainly interested in what the gk simulations reveal
about the nonlinear couplings, which make no such simplifications. Tech-
niques have been developed?':?? for inferring the strength of mode-coupling
in real experiments. Here, we extend the method of Ritz, et al?! to infer
both the Ly and M, for the gk experiment. The method requires as input



simply an ensemble of Nx pairs {¢&(t), ¢r(t + 71)} of harmonic amplitudes
evaluated at 2 nearby times, and so may be applied rather generally, not
just to real experiments or the results of the gk code used here, but to any
other sort of simulation codes (e.g., field-line following gk codes, gyrofluid
codes, or MHD codes) which can produce an analogous set of data. The
method is summarized in App. B.

Since our objective is to use the gk data to obtain a reduced description
containing the essential transport physics, we need in addition a procedure
for selecting which modes k to retain, to which the method of Ref. 21 will
be applied. The approach used here is somewhat reminiscent of that used
by Aubrey, et al. in obtaining a reduced description of 1-D Navier-Stokes
turbulent flow near a wall.23 Step 1 of the selection process has already been
indicated: by the Qj-ranking, we choose Ni modes which account for most
of the transport. For step 2, we wish to determine, for each such k, the
N, strongest couplings to other modes p (some of which may be among the
original k). Multiplying Eq.(8) by ¢} and adding its complex conjugate,
one obtains an equation for the spectral intensity By = (|6x|?) ({...) denotes
ensemble average):

8:Br =2WBr+ Y, Re(MipTipy), 9)
0=k+p+q

where Tipg = (Prdpdq) is the (one-time) triplet correlation function, and the
‘power transfer function’?! T'(k,p,q) = Re(Mip,Ts,,) describes the rate of
production of By, due to nonlinear coupling to modes p and ¢. From this, one
expects that those modes most strongly coupled to mode k will have strong
correlations Typq. Therefore, for each of the initial N modes k, we compute
Tipq for all p (and so g) in the simulation, and choose those N harmonics
p with the largest |Tipgl- (Since Tipg = Thep, Np is always taken as even.)
Finally, to the union of all £ and p chosen in steps 1 and 2, comprising a
total of Nx modes in our reduced system, we apply the method of Ref. 21
to infer the system dynamics, described by the coefficients {Lk, Mrpe}- ¥
there were no overlap of each mode chosen by this process, one would have
Nx = Ni(1+ Np). In fact, as will be seen, for the gk simulations there is a
great deal of overlap (¢.e., many modes p are among the initial Ng, as well as
among the N, for other modes k), so that Nk is in general much smaller than
this. For the gk example to be discussed shortly, one has N = 12, N, = 6,
for a maximum possible Nx of 84, but an actual Ng = 32, half of which are
complex conjugates of the others.
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We first benchmark the method on an ensemble of N,; realizations of
test data {¢x(t), dx(t + 71)} produced from integrating Ng o.d.e.’s of the
form (8), where the coefficients Ly, M, kpq have a known numerical value. The
initial conditions of the realizations of the ensemble have Gaussian statistics.
We take the Ly = (yx — iw,+) to have y; = 0 and real frequency w,; in the
range expected for the gk data, but otherwise arbitrarily selected (Fig. 10a).
The My, (real part plotted in Fig. 10b) are chosen to satisfy the constraints

Mypg = Migp, Mgpq =M_—p—q (10)

and
0 = 0% Mipg + 0pMpgr + 0g My, (11)

and are otherwise arbitrary. The first of Egs. 10 may be taken without loss
of generality, and the second must hold for real perturbations ¢(x). Eq.(11)
implies that the nonlinear term in (8) conserves W = ¥, 0. By, for any set
of coefficients 0. We take the coefficients o = 1 for all modes k. For
Fig. 10 we use a system of Ng = 12 modes, with a 1-dimensional &, equal
to £1,%2,... & 6, and the couplings satisfying the 1D ‘triangle identity’
0 = k + p+ g, as must the real data. The much smaller number of modes
than used in the benchmark of Ref. 21 parallels a difference between the
data from experiments and the gk simulation.

In Fig. 11a,b are shown the results inferred by the method for N,; =
2000. Comparing with Fig. 10a,b, one notes that the agreement is quite
good. In Fig. 11c-h we show the effect of reducing N,; through 100, 30, and
finally to 5. The real coefficients are fairly well-represented by the inferred
values down to N, = 30. Remarkably, even at N,; = 5 the rough features
of the real values are reflected in the inferred ones. This robustness is sig-
nificant, because while it not difficult to collect experimental data over a
time long enough to yield a large ensemble, gk ensembles with N,; greater
than about 100 becomes computationally prohibitive. A replacement of the
ensemble-average with a time-average over an orbit integration of compa-
rable length to the gk data also infers the Li and My, with comparable
success to the results in Fig. 11.

We now apply the method to the real gk data. The ensemble-average is
replaced by a time average within phase—c, with N,; = 240 samples (%;,t; +
1) spaced T1 = 107 apart, (79 = 20 is the simulation time step), and with
71 = 70, Which is small compared with a decorrelation time 7., as discussed
in App. B. The run is similar to that shown in Fig. 2, but with a much
longer phase—c. In Fig. 12, we first display [T},q| for a typical dominant k
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[here, (m,n) = (—9,4)] over the p = (m2,nz)-plane. One notes first that,
as already indicated for the dominant |¢|, the |Tiy,| have appreciable value
only near the line kj = 0, i.e., the p (and so q) are nearly collinear with
k. This might be expected, since harmonics far from the k) = 0 line will be
strongly damped, and hence will produce small values of |Tkpg| ~ PrPpdq-
And second, and probably more surprising, even along this roughly 1D locus
in the 2D p-plane, the |Tip,| are dominated by only a handful (Np ~ 5) of
p. This enormously simplifies the complexity represented by the nonlinear
term in Eq.(8).

Using these |Tiy,| to select the N modes in the reduced system, and
applying to these modes the method of Ritz, ef al. yields the results in
Fig. 13. In Fig. 13a, ImLy = —wyx is roughly linear with n k,, about
as one expects for drift—type modes, and Fig. 13b shows a region of modes
ReLy, = 4 > 0 most unstable for small [n| ~ 3, with the maximum v falling
as one moves toward higher |n| and towards n = 0, as expected from the ITG
analytic theory. The Mjyypq plotted in Fig. 13c have the same characteristics
as discussed for the Tipg: appreciable for only a small number of p’s, lying
nearly collinear with k.

The mode-selection process is fairly robust. In the results shown, the
initial Nz = 12 modes were chosen from a Qj ranking in phase-a. Instead
ranking the Q. in phase—c, one finds a different set of Ny harmonics (arising
from shifts in the dominant modes from nonlinear power transfer), but pre-
cisely the same full set of Nx = 32 harmonics when the dominant couplings
p are added to these in step 2, and so the same results for the Ls and Ms.
This kind of ‘closure’ of the mode set describing the essential physics is what
one expects when a genuinely reduced description is possible.

Having computed the Mjyy,, in Fig. 14a we display the power trans-
fer T(k,p,q) appearing in Eq.(9). Since k = (m,n),p = (me,n2), and
q = (m3,ng) are 2D vectors, to display this conveniently we sum over the
m’s at each n, reducing the 4D space (k,p) to the 2D plane (n,n2) shown
in the figure. Since, as we have seen, k, p, and q lie on a nearly 1D region,
this reduction doesn’t lose much information. At each n, one sees peaks oc-
curring in pairs of equal height, corresponding to n2 and n3. Fig. 14b shows
the p-summation Y g—g4pt+q T(%: P, g) on the right-hand side of Eq.(9), rep-
resenting the total nonlinear contribution to 0; By, versus n. For each n, the
multiple mode numbers sometimes occurring correspond to different values
of m for that n. One sees positive contributions (energy transfer into that
mode k from all others) principally for [n| < 2 and at least one m, and neg-
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ative contributions at larger |n|. Thus, for this simulation it appears that
energy is transfered principally from modes with |n| > 3, where v is larger
(Fig. 13b) to modes at somewhat smaller |n|, |n| ~ 1 — 2. This is consistent
with the resultant power spectrum By, shown in Fig. 14c (summed over m,
as for Fig. 14a).

V. Global Scalings

We now turn to the global scalings exhibited by gk tokamaks. As
for their experimental counterparts, these scalings exhibit the ‘bottom line’
behavior which a first principles theory should predict, and thus serve as
an important guide for such theories. As noted in Sec. I, here we consider
the scaling of transport with T, B, M, and ¢. These scalings bear on several
experimental issues of interest, including the power degradation observed
in L- and H-modes (related to the scaling with T'), current-scaling (scaling
with ¢), Bohm~versus-gyroBohm scaling?® (scaling with T', B, and M), and
the beneficial ‘isotope scaling’ observed in L- and H-modes?® and in TFTR
supershots?”?8(scaling with M).

For purposes of discussion, it is useful to consider simple power-law
dependences of x; on these variables. We first write

XZTWFX(B’M7Q)7 (12)

for some functionFy. We may further specialize to F « ¢*B*M™. Using
T =~ a®/x, ¢ ~ B/I,, and Eq.(12) to eliminate T in the power-balance
relation?® x ~ P/(nTR) yields the analytic form for 75

an

Y~ a2(p/Rn)—y/(yH)Fx—l/(yH) (13)
x P-y/(¥y+1) p—(z+2)/(y+1) I;‘/(y+1) M/ y+1)

For the collisionless systems with electrostatic perturbations simulated
here, invariance arguments3? constrain the dependence of x on these vari-
ables: x = xp¥(py/a,q;,..), where as in Sec. IIl xp = psc, = cT./(eoB)
is the Bohm value for x, 7 = T./T;, and % is the heat conductivity in gk
units. The dependences of ¥ on T, B, and M enter only through pgla ~
(MT)'/2/B, imposing the constraints z — (1—-2y) and w — (y—1) on
the power-law forms above. One notes that both the Bohm and gyroBohm
scalings satisfy these constraints. This leaves only 2 free exponents z and y,
which we now determine numerically.
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In Fig. 15 is shown the ion heat flux (in gk units) @ ~ kropsX versus
ge = q(r = a), keeping g fixed at 1.25, and for a/p;, = 64.  Besides
the value for the shearless system (g, = 1.25), Q increases with increasing
go (decreasing I,), with exponent ¢ ~ .25, lying between L,H-mode and
supershot behavior, but much closer to the latter. One also notes some
additional oscillatory structure superposed on this average behavior. This
may be due to successive major rational surfaces moving in past the surface
7 =1 as gq is increased, as illustrated in Fig. 16. One sees that one period
of the oscillation in Fig. 15 occurs from the crossing of the dashed guideline
at g, ~ 4.5 to g, ~ 8.5. These values correspond to the crossing of r =1
by the surfaces ¢ = 2 and 3 in Fig. 16.

Fig. 17 shows the scaling of Q with system size a/p;. One notes the
variation is nonmonotonic, dividing local power-law fits into two asymp-
totic regimes, one for ‘small’ gyrokinetic systems (gk-s : a/pg < 64), ap-
proximately fit by exponent y = y, =2 0.0, and one for ‘large’ systems
(gk-1: a/py > 64). For the largest system simulated (a/py = 128), the
Q-value is taken to occur the same amount of time after the phase-b peak
in Q as the other points shown, for each of which a steady—state in @ had
been reached. Taking that value one finds y = y ~ 1.0, very nearly the
Bohm value yp = 1. For the a/p, = 128 system, however, after a short
plateau Q continues to fall slowly. Thus, a sizeable error bar must be at-
tached to this point, extending downward from the value shown toward the
gyroBohm value y,p = 1.5. Further indication of the size scaling in the
gk-l regime comes from looking at the scaling of the spectral width {krpg)
with system size. This is shown in Fig. 18 for a/p; = 64 and 128. From
mixing-length arguments (cf. Sec. III) one expects gyroBohm Q-scaling
for (k.p,) independent of a/p,, and Bohm-scaling for (krpg) ~ (pg/a) 2,
decreasing with increasing system size. The two spectra in Fig. 18 have
ratio (k.p,)(128)/(krpg)(64) = .72 ~ (pg/a)*’, lying between Bohm and
gyroBohm, but much closer to the former, consistent with the scalings in
Fig. 17.

Table 1 summarizes the scalings just discussed, in an order which is
monotonic in each of y, z, and w for the analytic and numerical scalings. One
notes that the gk- scaling is rather close to Bohm behavior and (noting the
error bar) to gyroBohm, while gk-s is quite different. Thus, large gk systems
possess global scalings roughly described by analytic estimates based on
assumptions consistent with those made in the simulations (wiz., electrostatic
fluctuations only, 7 = 1, and a/pg > 1), and, as noted in Sec. III, have a
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scaling | T,Y, 2, W X~ ¢"TYB* MY TE
analytic/numerical:

gk_s .25,.0,1.0,-1.0 q.25T.OBl.M—l. P'OB_1'25[1',25M1‘
Bohm 0,1,-1,0 ¢TI B~ MY P“"’B'E’Iif,’M0
gk-1 .25,1.0,-1.0,.0 g®T0p=1070 P~>B4L1M7O
gB 0,1.5,-2,.5 ¢"T*>B—2M" P=°BOM~2
experimental:

L,H-mode 2,1,-2,-1 ¢?T'B-2p1 P“"r’BOI%M'5
Supershot 0,0,-.6,-.5 T’ B—SM—> P'BCIIM~>

Table 1: Transport Scalings

radial scaling also consistent with theoretical expectation. Small-gk systems
resemble supershots in scaling with P, I, and M, but differ strongly in scaling
with B. This resemblance is probably only coincidental, since supershots
have 7 >> 1, and in TFTR one has a/p, ~ 200, far beyond the gk-s range
a/pg S 64. Some studies of gk-scaling for systems with 7 > 1 have been
done by Santoro®! using the same code as here, and a beneficial effect on
transport of increased 7, similar to that seen for supershots,32 has been
observed. Further studies are needed to clarify the gk—scalings in this regime.
In the same work, looking at transport with varying mixtures of deuterium
and tritium, a modest inverse scaling of x with M (w < 0 and |w| < .5)
was found, similar to the isotope scaling in real machines. Again, however,
rather than reflecting the origin of experimental isotope scaling, this may
be due to the value a/p, = 64 used for those runs, putting them near the
transition from the small (w = —1.0) to the large (w = 0.0) system in
Fig. 17.

V1. Discussion

Concluding, we have seen that, in contrast to the scalings of real exper-
iments, the transport scalings of large gk systems with P, B,I,, M, and r
are roughly consistent with analytic estimates which are based on the same
assumptions as used in the simulation. While perhaps not relevant to large
experiments, we also note that there is a second, small-system gk scaling,
whose existence should be borne in mind both for finding what new physics
may govern it, and also to avoid confusing its properties with those of su-
pershots, which it in several respects resembles. The gk simulations exhibit
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some of the ¢ or current-scaling characterizing L and H-modes, but much
more weakly. It remains to be seen whether stronger g-scalings would be
found as the simulation parameters are advanced closer to those of real ex-
periments, for example from gk systems with larger a/ps. The g-scaling
also manifests an interesting oscillatory structure, which may be related to
the proximity of major rational surfaces to the surface of maximum drive.

That the large-system simulations are roughly consistent with analytic
estimates does not yet mean they are well understood — Bohm and gyroBohm
estimates are different in practical terms, but distinguishing between them
theoretically requires a more refined grasp of the nonlinear physics than
goes into mixing length arguments, from which either result can be derived.
Moreover, where the bounds of the gk-I family of systems lie, within which
transport appears non—-anomalous, has yet to be determined.

Several of the features of a first—principles theory which could provide
these answers have been drawn from the gk data. Transport is dominated
by radially global modes, and the scaling of @ with 7 is what one would
expect from such modes. The quadratic dependence Qp(t) ~ |#x]2(2) of the
heat flux suggests that the system is weakly turbulent. The fairly narrow
power spectra of the ¢y in the nonlinear saturated phase support this pic-
ture, though suggesting that the turbulence is not far from levels where a
strong turbulence treatment would be needed. Within this framework, we
have inferred the linear and nonlinear coefficients determining the mode dy-
namics in Eq.(8), which are free of assumptions which are normally made
in analytic treatments. For these, we find that, at least for the range of
gk systems investigated, major simplifications occur from the full complex-
ity which could be represented by Eq.(8). Namely, only a modest number
(Ni ~ 10) of modes k account for most of the transport, and each of these
is coupled to only a small number (N, ~ 5) of modes p. These together
permit one to describe the essential transport physics with a system of only
Nk ~ 30 mode amplitudes (15 complex amplitudes plus complex conju-
gates), sufficiently simple that its dynamics and steady—state behavior may
be amenable to analytic or semi—analytic solution. Calculation of the power
transfer function predicts a shift slightly downward in |n| from the value at
the maximum growth rate, consistent with the power spectrum observed in
moving from phase-a to phase—c.

Two further steps need to be taken to provide the desired theory of gk
transport. First, it must be established that the reduced system, governed by
the coefficients { Ly, My, } inferred here, does in fact reproduce the behavior
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exhibited by the full gk simulation. Since small errors in the coefficients can
cause spurious sources and sinks of energy, this may not be straightforward.
And second, the numerically—inferred form of the nonlinear coefficients must
be understood analytically, presumably by an appropriate evaluation of the
formal analytic expression (A10) or something like it. Work toward these
objectives is underway.
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Appendix A. Analytic Development

Here, we sketch the origin of some analytic results used or cited in
Secs. ITI and IV. We start with Eq.(4) for 6 f, which we write as

G_lle =21 az.fO -2y~ azéf, (Al)

where G~! = 8, + 2o - 8, is the inverse of the propagator along unper-
turbed trajectories. In the main text, we have parametrized phase space
in terms of the physical variables z = (R,v)j;y, 1). For formal manipula-
tions in complex geometries, it is often useful to instead use the action-angle
parametrization3? z = (8, J), where J = (Jy, Ji, J¢) are the invariant actions
of the unperturbed motion, with J; = (Mc/e)n, Ji the bounce action, and
J¢ = p¢ the canonical angular momentum. Conjugate to these are the angle
variables 8 = (6,,805,0¢), with 8, the gyrophase, 0 the bounce phase, and
b, = ¢ the bounce/transit-averaged toroidal azimuth ¢. In the absence of
the perturbing Hamiltonian h(z), these evolve at the constant frequencies
0 =0 = (g, W, Q)-

We may write any phase function A(z) as the sum of its ensemble-
averaged and fluctuating parts, A = (4) + A. Ensemble-averaging Eq.(Al),
one finds an expression for the transport in J-space, from which one may
obtain expressions for the radial fluxes such as Eq.(6):

8(f) = 0u{(6f) = — (81 - 8,6f) = 03 - (J16), (A2)

where we have used Liouville’s theorem & - Zg,1 = 0 and the fact that
the ensemble—average includes an average (...)g over the phases, so that
(0 - (60,14)) = 0.

To evaluate the action-space flux I = (J16f) on the right side of Eq.(A2),
we formally solve (A1) for 6f, and insert this into the expression for I':

=T +T™ = —(3:GJ1) - 83 fo — (31G%1 - 8:6F), (A3)

where we have used 9g fo = 0, i.e., that the equilibrium distribution fo is
a function of the constants of motion only. The first contribution T is
the quasilinear portion of the flux, arising from the linear term 2 - Oz fo in
Eq.(A1), and commonly used in estimating expected transport levels. As
noted in Sec. III, however, one sees that there is an additional contribution
I'™, arising from the nonlinear term in (A1), playing a role in the turbulent
flux analogous to the dynamic friction in collisional transport,3+3° whose
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presence is essential in maintaining the appropriate conservation properties,
and whose size in steady state may be comparable with I'?.

Dropping the nonlinear term in Eq.(A1), one may derive3® the action-
angle expression for the linear response f(!), and through it, for the response
functions g, = —(nx/no)/(egs/T) and gy = —(ps/po)/(edr/T) appearing in
Eq.(7) (species label s suppressed). This is facilitated by writing phase
functions A(z) in the Fourier representation A(8,J) = 3_; A(1,J) exp(il- ),
with vector Fourier harmonic index 1= (lg4,1,¢). In this representation one
has 23 -8, fo = —ih(1,J)1-8; fo, and G~ = 8, +il-2, which is easily inverted.
The full result3 is given by a sum over all 1 and modes a. Axisymmetry
requires [ = l_c = n, and one may take /; = l_g = 0 for the low—frequency
modes w/, < 1) of interest here. Then one has 1-83fy ~ fo(wl —1- Q)/T,
and 1- Q =~ okyo) + 19 + wa, with 7, the bounce/transit averaged parallel
velocity, wg = nf)¢ the toroidal drift frequency, [ =l — om, with trapping
state index o = 0 for trapped particles, and o = 1 for passing particles.
The linear response functions may thus be written35:36

w——w,{

9k | _ 1
l ar ] = ([ ,u2/2 ] {1- ;Jg(zy)Glz(zb)w — oy — 1% — wd}>'v7 (A4)

with u = v/v;, w! as defined in Sec. ITI, and (.. = Jdv(fo/ng) ... the
velocity space average over fo. J&(2zg)G7(z3) measures the strength of the
mode—particle coupling. The factor J§ accounts for gyro-averaging, Zg =
k1pg, and the factor G?(z) plays the analogous role for bounce/transit—
averaging, reducing to JZ(z) for a locally-eikonal mode structure ¢,(x) =
$a(r) expilf” dr' k,(r") + mf + n(], and becoming small for |I| > z,. Here,
for modes with ky < k1, 25 = ky py, with pp the particle radial drift—orbit
excursion.

For simplicity we adopt the usual ordering w/Q > 1 for ions in the
ITG mode. Then as discussed in Ref. 36, over the range Al ~ z, over
which G is appreciable the denominator in (A4) does not change greatly,
the summation over [ in (A4) can be approximately performed, and one may
take Iy = I = om. This results in

o — kv — wa

—w!
[gk ] =<[ 2 ] {1 - T(zg) —> Do (45)

similar to previous expressions,®”:38 including both the slablike and toroidal
branches of the ITG mode. For the evaluation of Eq.(7) used in Fig. 8c,
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we expand the resonant denominator, (v — okygj —wa) ! > W™ (1 +wi/w+
o€ ‘lu" + of"%ﬁ), where ) = 7))/v; and { = w/ |kyv;|- This yields a disper-
sion equation

0 = ge + Tgir(wy,
which is cubic in w. Solving this for w and substituting into the similar
expression for g;;. yields the proportionality factor between Q%’ and |¢x|? in
Fig. 8c.

Finally, we proceed to the nonlinear theory embodied in Eq.(8). In the
approximation 1 ~ 1= (0,0m,n), 1is given by k. As usual dropping the
velocity-space nonlinearity the vj,8,,6f in Eq. (4) or (A1) as down by ky/kL
from the spatial nonlinearity, one can write

G;lfk + Apr = Z wquop¢;f;1 (A6)
O0=k+p+q

where G5 = (1 — w) = i(oky) +wg — w), A = Jori(l- Q — wiefo/T,
Jor = Jo(kLpg), and wpy = (c/B)B -p x q. We solve this for fi in the weak
turbulence framework?? by iterating in powers of ¢x. At order O(¢), one

has
Gl fV + Argr =0, (A7)

giving the linear solution f,gl) = —GrArpr. We introduce the field operator
&;., giving ¢ from f: &.f = ¥,(47mes/k?) [ dvJorf. Then operating on
Eq.(A7) with &G4, one finds eV (k)¢ = 0, where D = 1+ &LGrAr) =
143, gsk(w)/(kXs)? is the linear dielectric, recovering expression (A5) for
Gsk-

At O(¢?), (AB) gives

—1 (2
GilfP M= Y wpgdoptpf (A8)
0=k+p+q
Symmetrizing this expression between p and g, substituting the expression

for f,gl) just found, and again applying &G}, yields

DEypr=— > Bk, —p,—9)6;4;, (A9)
0=k+p+g

with €@ (k,p,q) = 181Grwp[J0pGgAg — JogGplpl- Now writing eV =
¢ +¢", with € and €” the reactive and dissipative parts of ¢, respectively,
we as usual transform Eq.(A9) to the time domain, perturbatively treating ¢”
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and the slow time deviation of ¢y from the real-frequency form exp(—iw,it).
This yields v = —(€¢’/0,€')|w,,, and Eq.(8), with

Mipg = i€ (k, —p, —q) /8D (k). (A10)

In the fluid limit for ions, one has Jop — 1 and w >> 1- , so that Gy loses
its velocity—space dependence. This implies that 8,Ky = 8, (®rGrAr) ~
—w ™ K} in V), and that Gj, may be commuted outside the &y in ¢(?). Using
these along with &, = (p?/k2)®, and k2)?K}; = gr = 1 + xx in Eq.(A10)
results in

Mipg = wpg(Xg — xp)/ (1 + X1, (A11)

recovering the Mj,, of the Terry—Horton equation.®

Appendix B. The Method of Ritz, Powers, and Bengston

We briefly synopsize the method of Ritz, et al. used in Sec. IV, referring
the reader to Ref. 21 for more detail. From Eq.(8), we write the correspond-
ing finite-difference form

h=Kidits Y Quatidl, (B1)

0=k+p+q

where {K},Qppe} are the linear and nonlinear transfer functions, closely
related to {Lx, My} (see below), ¢ = ¢r(t), d) = dr(t + 71), and 71 is a
time short compared with the decorrelation time 7.. Applying (..¢%) and
(--@prdg) to (Bl) yields a system of equations to solve for the {K, Qrpq}:

1 *

Cr = KkBk+§ Z QkPqupq7 (B2)
O=k+p+q

Dipg = KiTkpq + QrpgFrpgs (B3)

with Cy = (¢}.¢%) the (auto)correlation function, and with Dyyg = (¢}, 9pPq),
Eipg = (|¢p0q|*), and By and Ty, defined in Sec. IV. The coefficients
B, Cky Dipg, Erpg, and Tip, are ensemble averages computed from the gk
data. A quasinormal approximation due to Millionshchikov?* is used to re-
duce a fourth~order correlation function to the simpler form Ej,,. Solving
these for { Ky, Qipq}, the {Li, My} are then given by Mypq = Qipg exp(—iAby) /T,
and Ly = [Kj exp(—iAby) — 1 + iAfy]/7, where exp(iAf) = Ci/|Ck|. In
Ref. 21, an iterative method was employed to solve system (B1) and (B2)
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for {Kk,Qkpq}- In fact the system may be more simply solved. Observing
that there is no summation in Eq.(B3), one may directly solve it for Qxpg:

Qrpg = (Dipg — Kkapq)/ Eppg- (B4)

Using this in Eq.(B2) to eliminate Qgp, and solving for Kj, one has

Ky = (Ck — 3 Y- (DipgTiga/ Broa))/ (Br = 5 X (Tioal?/ Bi))- ~ (B5)

Substituting this back into (B4) yields the solution for Qxpq-

21




References

1A.A. Galeev, R.Z. Sagdeev, Sov. Phys-JETP 26, 233 (1969).
2P. H. Rutherford, Phys. Fluids 13, 482 (1970).
3F. L. Hinton and R. D. Hazeltine, Rev. Mod. Phys 48,Part 1, 239 (1976).
4P. C. Liewer, Nucl. Fusion 25, 543 (1985).
SW.W. Lee, Physics of Fluids 26, 556 (1983).
8S.E. Parker, W.W. Lee, R.A. Santoro, Phys. Rev. Letters 71, 2042 (1993).
"A. Hasegawa, K. Mima, Phys.Rev.Lett. 39, 205 (1977).
8P.W. Terry, W. Horton, Phys.Fluids 25, 491 (1982).
R.E. Waltz, Phys.Fluids 26, 169 (1983).
10W. Horton, Phys. Fluids 29, 1491 (1986).

113. Bowman, J.A. Krommes, M. Ottaviani, Physics of Fluids-B 5, 3558
(1993).

12J. Bowman, J.A. Krommes, M. Ottaviani, (in draft, 1994).
13SE. Parker, W.W. Lee, Physics of Fluids-B 5, 77 (1993).
14G. Hu, J.A. Krommes, Physics of Plasmas 1, 863 (1994).
15T S. Hahm, Physics of Fluids31, 2670 (1988).

16G. W. Hammett, M. A. Beer, W. Dorland, S. C. Cowley, and S. A. Smith,
Plasma Phys. Control. Fusion 35, 973 (1993).

1"R.E. Waltz, G.D. Kerbel, and J. Milovich, General Atomics Report GA-
A21565 (to appear in Physics of Plasmas, 1994).

18B.I. Cohen, T.J. Williams, A.M. Dimits, and J.A. Byers, Phys. Fluids B
5 2967 (1993).

19M. Zarnstorff, et al., Proceedings of the Twelfth International Confer-
ence on Plasma Physics and Controlled Nuclear Fusion Research (Nice,
France, October, 1988) (International Atomic Energy Agency, Vienna,
Austria, 1989), Paper IAEA-CN-50/A-3-3.

22



20R.Z. Sagdeev, A.A. Galeev, Nonlinear Plasma Theory, T.M. O’Neil and
D.L. Book (eds), W.A. Benjamin, Inc. New York (1969).

21Ch.P. Ritz, E.J. Powers, R.D. Bengston, Physics of Fluids-B 1,153 (1989).
228, Assadi, S.C. Prager, K.L. Sidikman, Phys. Rev. Letters 69, 281 (1992).

23N. Aubrey, P. Holmes, J.L. Lumley, E. Stone, in Advances in Fluid Turbu-
lence, Doolen, Ecke, Holm, Steinberg (eds.), North Holland, Amsterdam
(1989), p.1-10.

24M.D. Millionshchikov, Dokl. Akad. Nauk SSSR 32, 611 (1941).

25F W. Perkins, C.W. Barnes, D.W. Johnson, S.D. Scott, et al., Physics of
Fluids-B 381, 477 (1993).

263.M. Kaye, C.W. Barnes, M.G. Bell, J.C. DeBoo, et al., Phys. Fluids-B 2
2926 (1990).

27M.G. Bell, L.R. Grisham, R.V. Budny, J.D. Strachan, Bull. Am.Phys.Soc.
38, paper 2F08 (St. Louis, 1993).

283 D. Scott, et al., “Heat and Particle Transport in Deuterium-Tritium
Plasmas, in draft (1994).

29W .M. Tang, in Theory of Fusion Plasmas, edited by J. Vaclavik, F. Troyon,
and E. Sindoni, Proceedings of the Joint Varenna-Lausanne Interna-
tional Workshop, Varenna, Italy (August, 1990) (Editrice Compositori,
Bologna, 1990) pp.31-44.

303 W. Connor, J.B. Taylor, Nucl. Fusion 17, 1047 (1977).
31R.A. Santoro, Ph.D. Dissertation, Princeton University (June, 1994).

328 D. Scott, C.W. Barnes, L.R. Grisham, G. Hammett, W.W. Heidbrink, et
al., Proceedings of the 13th International Conference on Plasma Physics
and Controlled Nuclear Fusion Research (Washington, DC, October,
1990) (International Atomic Energy Agency, Vienna, Austria), Paper
TAEA-CN-53/A-3-6 (1990).

33A. N. Kaufman, Phys. Fluids 15, 1063 (1972).
34T H. Dupree, Phys.Rev.Lett. 25, 789 (1970).

23




35H.E. Mynick and R.E. Duvall, Phys. Fluids-B 1, 750 (1989).

36H.E. Mynick, Phys.Fluids-B 4, 1229 (1992).

37G. Rewoldt, W.M. Tang, E.A. Frieman, Phys.Fluids 21 1513 (1978).
38H. Biglari, P. H. Diamond, M. N. Rosenbluth, Phys. Fluids-B 1, 109 (1989).

24



Figures

FIG. 1. Geometry and parametrization of the simulation volume.

FIG. 2. Radially-averaged ion heat flux QT versus time for a typical gk
simulation, showing the three characteristic phases (a-c) discussed in
Sec. II.

FIG. 3. For linear growth phase-a, (a)contours of constant potential ¢(r, ,()
in poloidal projection, (b)¢(r,8,¢) in the midplane, and (c)|¢(r,m,n)|
over the (m,n)-plane.

FIG. 4. As Fig. 3, but for nonlinearly saturated phase—c.

FIG. 5. Plots of the (a)Bohm and (b)gyroBohm expressions for the heat
flux Q versus minor radius, for the temperature profile used in the sim-
ulations.

FIG. 6. Time-averaged value of the numerical heat flux Q;k versus minor
radius.

FIG. 7. Running sum Q; = Z{=1 Qu; of the largest j contributors to the ion
heat flux Q(r = ro) versus j.

FIG. 8. Time-dependences of (a)the Ni/2 = 6 largest contributing pairs
Qi to the heat flux Q at r = rp, (b)Px(?) corresponding to the Qx
in (a), and (c)Qx(t) computed using the ¢ from (b) in a quasilinear
expression.

FIG. 9. Power spectrum of the n = 4 component of ¢ from the simulation,
observed at r = a/2,6 = 0 in nonlinear phase—c.

FIG. 10. Coefficients (a)Ly and (b)Mz,, used to generate the test data to
benchmark the implementation of the method of Ref. 21. The numbers
jr =1,..Ng in (a) are mode labels.

FIG. 11. Inferred Ly and My, for the system with real coefficients in Fig. 10,
for ensembles with N,; = (a,b) 2000, (c,d) 100, (e,f) 30, and (g,h) 5.

FIG. 12. Ty, over the p = (mg,n2) plane computed from the gk data for
k = (—9,4), a typical dominant contributor to transport.
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FIG. 13. Coefficients (a,b) Ly and (c¢) M}y, computed from the gk data. The
k—value for (c) is the same as for Fig. 12. As in Fig. 10, the numbers j;
are mode labels, here for the reduced gk system.

FIG. 14. (a)Plot of power transfer function T'(k, p, ¢) over the (n,n2) plane
for the gk data of Figs. 12 and 13. (b)Total nonlinear power transfer
>, T(k,p,q) from modes p into mode k = (m, n) versus n. The numbers
are mode labels j, as in Fig. 10. (c)Power spectrum B versus 7.

FIG. 15. Parameter scan of normalized heat flux Q versus g,, for gk toka-
maks with a/p; = 64, g9 = 1.25.

FIG. 16. Locus of the rational surfaces ¢(r) = 2,3,..8 versus ¢,, showing
their intersection with the r = ¢ surface. At the right is shown xr(r/a)
providing the drive for the instabilities.

FIG. 17. Scaling of Q with a/p,, with go = 1.25 and ¢, = 4.25.

FIG. 18. Power spectra By versus k,p, for simulations with a/p,=64 and
128.
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