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Abstract

t

, An overview is given of the analytic structure for the linear theory of the Toroidal

! Alfven Eigenmode (TAE), where multiple gap structures occur. A discussion is given of

the alpha particle drive and the various dissipation mechanisms that can stabilize the

system. A self-consistent calculation of the TAE mode, for a low-beta high-aspect-ratio
i"

plasma, indicates that though the alpha particle drive is comparable to the dissipation

mechanisms, overall stability is still achieved for ignited ITER-like plasma. A brief

discussion is given of the nonlinear theory for the TAE mode and how nonlinear alpha

particle dynamics can be treated by mapping methods.
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I. Introduction

Tokamaks have achieved plasma confinement properties that are close to energy breakeven

conditions. _'_Hence it is now realistic to assess the quality of high energy particle containment

that is to be expected in fusion ignition experiments, such as ITER, 3 and Ignitor. 4 In these

experiments a significant fraction of the stored kinetic energy will be in the fusion produced

high energy alpha particle component, and to achieve ignition it is essential that the alpha

particle energy is available to directly heat the plasma background so that fusion ignition is

achieved and the burn sustained.

Recently, there has been considerable theoretical s-l° and experimental activity 11a2 in

trying to understand the role of Alfv6n waves in the containment of alpha particles. In a

tokamak ignition experiment the alpha birth speed is expected to be comparable, though

somewhat larger, than the Alfvdn speed. Further, because of the high alpha particle energy,

the diamagnetic frequency of the alpha particles, the alpha particle drift frequency oa_0 "_

mc Eoo(Cgenrzo/0r)/2e_ B (no - alpha particle density, E_,0 birth energy of alpha particles,

e_ = alpha charge, B = modulus of magnetic field, rn the poloidal mode number) can readily

exceed the Alfv6n frequency, oa.._ vA/2qRO. (q being the local value of the safety factor, Ro

tile major radius and VA the Alfvdn speed.). Under this condition the universal instability's

free energy lnechanism of the alpha particles is available to excite Alfvdn waves and thereby

cause enhanced alpha particle diffusion. In the worst case, alpha particles would be : :Lpidly

lost to the edge, thereby not allowing their energy to directly heat the background plasma.

A number of theories have been developed to study this problem quantitatively. Several

aspects to the theory are needed" (1) a linear analysis, (2) a description of the alpha particle

interaction with the Alfvdn wave la as well as the background dissipation mechanisms, 14-lr

(3) a nonlinear theory to quantify tile anomalous loss. 1s'19Here we will give an overview of
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the state of these theories. First we will present a brief background for describing Alfv_in

waves in large-aspect ratio tokamaks. In particular, we discuss the singular structure of the

equations when w2 = km,,2v_t, where k,_,,_ = (n - rn/q)2/P_. Understanding this structure

enables one to construct a toroidal coupling theory at large-aspect ratio where a harmonic

pair, ra and ra + 1 strongly interacting at a local position r where k_.,,(r) = 2k,,,+a.,(r ). This

occurs at r =rm where q = (ra + 1/2)/n - q,,, and it excites the rath TAE "couplet."

This interaction also causes the ra-rh harmonic to interact with its other resonant harmonic

neighbor rr_- 1 at q(r) ._ qm-1 - (ra- 1/2)/n, while the rn + 1 mode interacts with its

other resonant neighbor rn + 2 at q,,,(r) ._ qm+l _ (rrt -Jr-3/2)/n. To a good approximation,

no other toroidal interactions of the rn and rn + 1 mode is needed. The result is that the

eigenmode can be described by a set of amplitudes C_ (which we call fluxes) that determine

the structure of the entire eigenmode.

For many cases we need only obtain the set of fluxes C_, to determine the stability

properties of the system. For the rnth harmonic, the mode amplitude peaks, with a known

form, at q(r) _ qm and q(r) _ q,__l, from which the dissipation and alpha particle drive can

be expressed in terms of the mode amplitudes C_. Using perturbation theory, one can then

determine when the wave energy of the eigenmode is driven unstable by the alpha particles

in tlm l)reser:ce of appropriate dissipation mechanisms

The relatively simple form for the eigenmode in terms of the fluxes also allows for a

nonlinear description of alpha particle dynamics in the presence of a TAE wave. A mapping

method a8 has been developed to understand the nonlinear particle orbit interaction. An

analysis of the map enables one to determine the level of mode saturation _9and to determine

if the alpha particles orbits are stochastic.



II. Alfv6n Continuum Resonance

In a cylindrical plasma, the reduced MHD equation at low beta for the mode amplitude

_,_,,_, takes the form,

Tr =0. (1)

This equation is singular at points where the coefficient of the highest derivative vanishes.

From a limited point of view, the MHD equation cannot be inverted through the points r = r_

where _2 .2 2= km,_(r,)vA(ro); for an increasing q(r) profile there can he no more than two such

points for a given _. However, by introducing causality arguments, these singular points can

be interpreted as "dissipation" poles (similar to what arises in conventional Landau damping)

that give rise to a predictable damping rate that is independent of the detailed mechanism

for damping. 2° Hence if an oscillator is applied at a real frequency wo, or an Alfven wave

is excited by alpha particles at a frequency, _0, damping from the Alfv6n wave continuum

occurs at points r_ ,,'here k_,_(r_)v_ = a;02. Equation (1)is then integrated with Imco > 0 but

infinitesimally small, and it follows that the flux C,_ cn ra(w2/v A - k2m,_(r))dd)m,_/dr is slowly

varying near r = r,, while $,_.,_(r) exhibits a rapid jump. This case leads to dissipation.

\Vhen toroidal coupling is considered, special conditions can be fulfilled that destroy the

damping mechanism of the Alfvdn wave continuum and allows a nonsingular response from

the plasma with the possibility of additional Alfv6n wave mode structure. In particular,

,,,hen one satisfies a degeneracy condition w2 _ k_,_ v_ _ k_+l, _ v_, dissipation need not

occur when there is toroidal coupling. This is illustrated in Fig. 1 where the resonance

frequency as a function of position is plotted for a particular q-profile and n-value. The

dotted lines are the resonance points neglecting toroidal coupling, whereas the solid lines

indicate how the resonance changes with toroidal coupling. We see that "gaps" form in
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the resonant structure about a frequency w = wm = va(r)/2qm Ro as well as at other

frequencies. At finite toroidicity, external modes driven at frequencies that thread the gaps

will not produce damping near r _ rra, as they would without toroidal coupling. In addition,

self-excited modes become possible for each gap. When many gaps align, these self-excited

modes can themselves interact, causing a global eigenstructure with excitations at several

gaps; if the frequency goes through resonance at some remote resonant structure, residual

damping results.

III. Outline of Model for TAE Mode

The procedure for obtaining the overall perturbed electric field potential _, which can be

written as _(r,t) = 2m _,_(r)exp[-i(m0 - ,z¢ + wt)], is as follows. Near each Alfven sin-

gularity, the individual poloidal components experience a rapid change in amplitude A_m,

whereas the "flux" quantity Cre(r) _ ra(w2/v_ - k_m)(d/dr)('_m/r ) is slowly varying spa-

tially. Thus, if the values of C,_(r) are known at the degenerate singular points (call them

-_-it-
C,_+I and C_ at r = rra), the basic form of the eigenfunction is determined within the inner

layer. For example, in ideal theory, in the large-n, low-beta limit (with similar results for

finite rz), the functional forrn is found to be,

, _q)_ (u+g_,)C++ c_+1_ (2)
dy y2 + 1 - g_

with 9 = ,:ln[q(r)- qm]/gm, g,_ = (W2/W_ -- 1)/gin and k'm = 5rm/2R. If gm < 1, Eq. (2)is

nonsingular for real frequencies, whereas if 9_ > 1, Eq. (2) can be integrated through the

singularity with the use of causality (which formally treats Imw > 0), to obtain

_¢+= lim [_m(r,,+g_)-_,_+_(r_-g_)l=-_r(a +C ++/3 +C_+_)

_,;;-,,+,= _-(<,+,c,:+,+_+, c,t,+) (3)



with a_+ 1 -_ a + = -g,_(1 - g_)-'/" and fl,_+, _- ft+ - -(1 - g_)-,/2, where exact equality

holds at high n.

These .jumps A(I),,, need to be matched to the solutions of the cylindrical problem away

from the singular points. For example, for the ruth mode with two singular points at q _ q,,

and q _ qm+l, the solution can be written as

t,t, _)(q) q > qm

_..(q) = c,+_;_(q)+ c_ _.+(q), q.,_, < q< q..

c_,¢., ¢_)(q) q < q.,_, .

Here _)(q), Cim(q), 4)(_)are the solutions to Eq. (1), in the regimes specified, with ¢_)(q)

satisfying the appropriate boundary condition at the plasma edge, ¢_)(q) satisfying the

regularity condition at the origin, and ¢;(q) and _+(q) being regular at q __ qm-1 and

q = q,, respectively. Near the resonances we have

¢_)(q)---+ er_[n(q- q,__,) + 7rA_)] , q--+ q,,,_,

q

{ en [n(q -q'_-'/2_:'/2)] + rrA_ ' q--+ q''-l/2_:'/2 (4)d2im(q)--"+ lr'_m q --* qm-1/2:1:1/2,

where the various A terms are determined by the properties of Eq. (1). The jumps in 4),,,

from the cylindrical solutions can then be matched to the jumps in q),,, from the toroidal

solutions. The result of the matching leads to a 3-term recursion relation 9 for the mode

amplitudes C+:

[ +_ _+ _+, z_+ zi_,]

+ _- + +

_.._.,+,c..+, _, 5+c.._, = o (5)

,vhere --+A,,,= A_) - A_ and m_ : A_) - A +, and C_ = (ii a C+ -/9,T,, C+_,)/(}_ + eL).



The solution of the three-term recursion relation given by Eq. (5) then determines the

overall eigenmode structure. A typical example is given in Figs. 2 and 3 for the eigenvalues

(obtained for n = 3) as well as the relative values of the flux amplitudes C+.

IV. Marginal Stability Calculation

Having determined the mode amplitudes, the growth rate can be determined perturbatively

by the relation

Re f dar E* •j
3,= d

2f a_lB01_/4,_
where f dar[Bo12/47r is the wave energy of an Alfven wave for which the field energy and

kinetic energy are nearly in balance and in the dominant regions of excitation Bo >> B,.

The wave energy, expressed in terms of the Cm's is given by

_ + _+') (6)d3r [Bo[ (x
4_ _(_)_ (1- gL),/_

with

@_-- IC+l_+ IC7..+,+ g.,C+l_/(1- g_)

_,_+, lC,r,+,+ lC++ 9..c;+, /= i_ I_/(1-g_).

The power transfer due to kinetic processes from the background plasma and alpha

particles is also calculated perturbatively, given the eigenfunction. For the alpha particles,

one needs to take into account that their orbit width is appreciable compared to the width

of a typical TAE mode 6r ,,_ 7./4 An evaluation of the alpha particle drive in the large-nq'(rm)"

aspect-ratio limit, with the orbit excursion

/",, - q(_)_ll (1+ _I/_)_ < _q,(,_),



(_co = co B/mo c) has been performed with the use of the universal form of the eigenmode

given by Eq. (2). The result from one TAE structure (for w_ >> w) for a large-aspect ratio

tokamak is

B_ nq_ d,.d'v--Z(m + e)_ _- ""('q _n e)-oo Rq

le¢_,t+ (e- 1)¢_+,__,1_

where

fo _ goeC,,_,e(,.)=e2_ cose0¢..(_+ Abcos0)_ [C++i(C+gra+CT.,+,)]z'

z -(x + iy)+ ((x + iy) _ 1)'/2 e(1 -9_)= - , x= (r--rra)/Ab, y= 4nq,(r. )A b

and the branch of the square root must be chosen so that ]z[ < 1.

In gener_l, f d3r E'j should be calculated from the kinetic contribution for each species.

The general result has the form,

7=-7o+ f d"E'J/2f d'rlBl_/4'_=-7.+E "r.,,,_.,/E A., (7)
m,2 ] ra

where -% is the damping rate of the zeroth-order problem, Ara = Ara(Cra,Cra+l) is a

quadratic form in the wave amplitudes (related to the Cn's) with E,,_ra = f darlBl2/4rr

the wave energy, and 70 ) is the growth rate that would arise due to the jth instability

source if only a single resonance pair of poloidal harmonics are excited. In Eq. (7) only the

inner region field structure, given by gq. (1) with self-consistent values for C_, is needed.

The various contributions to 7_ ) are as follows:

1. The destabilizing contribution, 7 (_+), from the alpha particle spatial profile gradi-

t this contribution is
ent' For the important case when g/4nq'(r_) < Ab < ,,q,(_,,),

given approximately by

"r('°+) 5q_,(_- g_)'/',.,,, 1 H 1- -- . (8)
_ - _ _o] _oo
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Note that _,_+) is independent of the mode number rz. If v..t < v_0 (the alpha birth

velocity), there are additional, smaller contributions. [Eor numerical calculations, a

nlore general formula for 7(_°+) is used, which, however, is restricted to Ab < 1/7_,q'(rm).]

'2. Alpha particle damping, 7_ '-I, from the energy gradient of a slowing-down distribu-

tion: Roughly, this is given by 7__-) = -_,(m_+l(co/_o,_,)and is small for large-n.

3. Ion Landau damping, 7}i), arising from the alpha particle interaction with the magnetic

curvature at the wave-particle sideband resonance vii -VA/3: This is given by 14

_m - E _ _/_ (mi):_ _×P (9)J ,-a 9 (,na) Z_3

where the j-summation is over deuterium (j = d) and tritium (j = t) ion species, with

the brackets designating a density average, e.g., (rn} = (na rnd + nt rnt)/n,..

4. Collisional electron damping due to magnetic curvature, 7_ 'c) and parallel electric field,

-y_.ll), effectslS,16 (the latter is here newly calculated by Rosenbluth for the TAE mode

structure)" The combined result for ./_._1+ ./_,111is given by

[?_,c_+_,11_]/_o= -0.5 6.7aoq_m+ g_(:_ g_m)_ [: + ("_m/_ R)_/_]

1
X (10)

.  5,n(:.
with u_ = 4rr n_ e4 In A/rn_/2(2T_) al2. Note that .y_.ll)_ _m2, so that this contribution

cat: cut off high-mode-number instabilities.

5. Dissipation due to ideal continuum mode damping: This is also part of Atcand is

discussed in Refs. 8-10.

6. Recently it has been noted that damping from radiation of kinetic Alfv4n waves is

significant. 21 ix. formula for the damping rate, that can be derived from a formalism

developed by Rosenbluth2, _ gives for the nonideal damping, 7("i), lr



"7(_) g(1- g_)a/2

where

f(9) - J0[('+g")'i'dk [1 - (k 2 - 9m)=]'/_

and

is the parameter, which when small, eilows the ideal MHD theory to be applicable. Here Pi

is the ion Larmor radius, and p, = pi(TclTi) 1/2.

Equation (7) was evaluated numerically, with self-consistent eigenvalues and eigenfunc-

tions. A self-consistent profile based on fusion cross-sections with Tc = Ti was used for the

alpha particles. Typical results, shown in Fig. 4, indicate, that for reactor-type parameters,

our model predicts TAE stability when Tc < 25keV. The tendency for strong stabilization

at low-plasma beta occurs because va becomes larger than v<_0and have the principal res-

onances are then not expected, whereas the stronger stabilization tendency at higher beta

values occurs because ion Landau damping becomes significant. At high temperatures the

dissipation due to radiation of kinetic Alfv_n waves is important in achieving stabilization.

However, it is important to note that the alpha particle drive is competitive with dissipation

mechanisms. Hence, modifications of the theory due to geometry, can conceivably alter the

present stability result.

V. Nonlinear TAE Behavior

The nonlinear evolution of the alpha particle distribution has been analyzed 19 as a special

case of the problem of a distribution function with a weak beam-like source. The latter is

generic to many plasma situations and can be considered in the context of the paradigm of

the bump-on-tail instability, a.s well as for the more complicated alpha particle-TAE wave

10



inter_tction. The answer to the question of whether unstable waves gives rise to spatial

diffusion of alpha particles depends on whether stochasticity due to the perturbed fields

develops in the particle orbits. Without stochasticity, the wave amplitude saturates at the

natural level determined by when the resonant bounce frequency of a particle in the wave

field becomes comparable to the linear growth rate. The amplitude of the radial bounce

motion, 8q, of a particle in the wave field has the dependence _Sqcx 6B¢/2, where 3Br is the

magnetic field perturbation and q(r), the safety factor, is used as the radial variable; in the

limit :r_/4rTzS,_ < Ab < r_/rnS,_, the explicit result is 5q/q_ _ 4(2SmRSBr/nr,,,B) 1/2.

For a single TAE mode, the neighboring gap resonances are separated by Aq _ 1lh. Hence,

stochasticity is achieved if 5q > 1lh. If there is a spectrum of modes, however, the overlap

condition can be considerably less: roughly, _q > 1/pa, with p the number of unstable modes

that interact with the particle.

Recent experiments 11'_2have observed pulsation behavior in a steady-state, weakly beam-

driven plasma. Such pulsations lead to benign oscillations if the wave saturation occurs below

the stochasticity threshold, since then global alpha particle diffusion does not occur. How-

ever, if the saturation level is above the stochasticity tl=reshold, a phase-space "explosion" is

predicted, TM in which the diffusion process itself allows the release of free energy that pumps

the wave amplitude. Ultimately this causes rapid diffusion and either flattening or loss of

the alpha particle distribution function, consistent with rapid particle losses observed in the

TAE experiments with fast ions simulating alpha particles. These bursts occur periodically,

with a relatively long quiescent phase during which a flattened alpha particle distribution

builds up with benign pulsations, appro×imately according to classical theory, to the point

where a phase space explosion occurs and the distribution again flattens.

Mapping methods 19 were developed to provide a more quantitative analysis of the non-

linear pulsations. The map to describe wave-particle interaction for one particle transit is

based on linear theory, whereas the orbit nonlinearity is described by a map over many tran-

11



sits. Figure ,5 shows examples of the transition from orbit integrability to orbit diffusion.

The map is now being generalized to incorporate the dynamics of both particles and waves.

VI. Conclusions

We have indicated how a self-consistent model can be established to estimate the effect of

alpha particles on Alfvdn instability particularly for the TAE-mode. In both linear and

nonlinear theories significant advances have occurred. Several areas where improvement is

needed, and is being worked on are the following:

1. Introducing nonideal effects into the general structure of the three-term recursion rela-

tion. The appropriate generalization has been formulated by Rosenbluth. 22Such effects

are important, as recently shown by Mett and Mahajan. 21 As mentioned already; it

gives significant damping by radiation of kinetic Alfvdn waves and it also allows kinetic

Alfven waves to form a separate standing wave spectrum.

2. Bringing finite beta. effects into the theory. This is an important element, particularly

since the Alfvdn phase velocity is reduced, 23and the condition for resonance is altered.

The inclusion of this effect is probably necessary to be able to quantitatively explain

the experimentally observed thresholds in TFTR and D-IIID.

3. Incorporating elongated plasma cross-section into the theory. This will certainly bring

into consideration the ellipticity-induced Alfv6n mode (EAE). TM One also needs to

explain the gap structures and resonances in shaped experiments such as D-III-D ex-

periment. There is a challenge to use complicated MHD codes in such a way that the

coatinuum damping can be described as a perturbation to the zeroth-order results. A

possible perturbation method has been suggested in Ref. 8.
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4. Describing the effect of large orbit excursions when Ab > 1/nq'(rm) where our calcu-

lation fails. Fu and Cheng have developed a ballooning theory to treat this regime. 24

Special techniques could be developed from the point of view of our nearest neighbor

interaction model. However, the result will probably be more numerically intensive

than the present work.

5. More study on the character of the alpha particle response to the kinetic Alfv6n waves

is needed.

Our present results predict stable fusion regimes for temperatures less than 25 keV. How-

ever, as the drives for instability are close to the dissipation rates, the changes that arise

from including more realistic geometry effects will need to be correctly assessed in the future.

Nonetheless, it is encouraging that stability is predicted in this large-aspect ratio low-beta

theory.
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Figure Captions

1. Toroidally coupled shear-Alfv6n continuum resonance curves for the normalized fre-

quency _R/VAo as functions of the normalized minor radius v/a, for n = 5, q(0) =

1.0, q(a) = 2.5, and a/R = 0.25. The m values indicate the dominant mode number in

the regions where toroidal coupling is negligible. The dotted curves are the resonant

curves without toroidal coupling.

2. Continuum resonance curves (only the tips of the curves near the gaps are shown) and

normalized TAE eigenfrequencies _R/vAo, numerically obtained for a typical density

profile, with n = 3, q(0) = 1, q(a) = 3, and a/R = 0.2. The respective eigenfrequen-

cies and their associated damping rates (imaginary part) are A: (0.52,-4.0 x 10-2),

B: (0.40,--8.5 × 10-6), C: (0.35,-1.1 x 10-2), D: (0.34,-3.4 x 10-a), E: (0.31,-4.7 ×

10-3), and F: (0.27,-4.0 × 10-3).

3. Harmonic content ICll2 of the global TAE mode associated with each of _he discrete

eigenfrequencies shown in Fig. 2, for each sideband number _.

4. Ratio of the power transferred from ali bulk plasma dissipation mechanisms to the

a-particle destabilizing power transfer as a function of the plasma central _ value,

with various plasma temperatures (10 to 25 keV), for an n = 3 TAE. Stability occurs

because this ratio exceeds unity.

5. Surface of section of seven particle orbits plotting the q-position vs. poloidal angle.

The mode amplitude is 1/2 the overlap criterion for the onset of orbit stochasticity.

Appreciable stochasticity is apparent, but the diffusion is still not global, and this case

will not produce appreciable anomalous particle loss.
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