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Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not aecessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein do not necessarily state
or reflect those of"the United States Government or any agency thereof.
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We present four small, high quality, Motif based tools for high energy physicists and
discuss some of the less obvious work that is necessary to fully take advantage of graphical
user interfaces (GUIs). Histo-Scope and NPlot are interactive data display programs.
Histo-Scope is for viewing data as it is collected in running analysis or data acquisition
programs, NPlot, for plotting data from text files. Visajet is an interface tbr the ISAJET
event simulation program. It gives users a fast way to configure ISAJET and displays
ISAJET events in a three dimensional phase space display that users can rotate and
manipulate with the mouse. NEdit is a GUI style plain text editor.

Introduction

For the vast majority of users, the menu/window/dialog style of interface is a very important
achievement. Software that once took weeks to learn can often be used immediately without
training. Graphical user interface (GUF) environments seamlessly integrate graphics and mouse
.interaction, giving users the ability to directly manipulate graphics on the screen, and optimally
allocate screen space with overlapping windows. Unfortunately for HEP, these benefits come
primarily by trading programming time for user time. Providhlg software that actually vA_es
advantage of them is harder than most people think.

This paper presents a project dubbed "Nirvana" which provides a library of graphical user interface
tools for the high energy physicists' workstation that employ GUIs to their fullest advantage. It
reviews our experience with this new technology and its applicability to HEP.

The Real Advantages of GUIs

Replacing a command line or character based interface with panels of buttons and text fields may
make a program look more attractive, but it is just as likely to make the program _ to use if
done improperly. The real power of graphical interfaces comes from very careful design,
consistent application of design rules, and knowledge of the task. Applying these rules can require
huge amounts of extra work that is almost invisible in the end product. Unfortunately, the same is
true for most of the benefits that people associate with GUIs. Taking advantage of direct
manipulation, for example, usually means hand coding animated graphics with little or no support
from the GUI libraries.

Below are some examples of the kinds of design guidelines that contribute to an effective interface.
A well written GUI application should:

• Be consistent in its reactions to user actions regardless of context, and consistent with other
applications on the same system.

• Make optimal use of limited screen space.

• Be efficient for expert users and have a natural transition between novice and expert.

• Present clear choices. Ali of the capabilities of a program should be made immediately
apparent and available, in any order, from the top level of the program.

• Make every operation undoable, or warn the user that the operation is irreversible. Every
dialog should have a cancel button.

• Provide positive visual (or audio) feedback for every user action. Give users a sense of
completion, so that they don't worry that some further action is required of them.
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• Be continuously responsive to user input. When the system is busy, the program needs to

indicate it clearly. Long operations should have progress indicators.

• Make it difficult for the user to enter bad data, and when an error does occur, explain what
is wrong as speci_fically as possible.

The end result of this kind of careful design is an interface that seems almost invisible. For
physicists, this means they can concentrate on their analysis rather than on the software.

The Nirvana Tools

The computer of choice for HEP analysis and data acquisition problems is usually a high
performance CPU running Unix or VMS. The GUI environment on most of these computers is X
Windows with the Open Software Foundation's Motif window manager and widget set. Despite
bugs, poor design, and poor performance of X/Motif, it is possible to realize nearly ali the
advantages experienced by users of better designed GUI environments.

The appropriate software tools in a workstation GUI environment are sm'til inter-operable
applications. Smaller applications with simpler interfaces can be used together effectively on a
single screen because of the workstation's support for windows, cut trod paste, and inter-process
communication. Giving the small applications interfaces that are consistent with o_:eanother
ensures that users' knowledge of the operation of one will easily transfer to the oper:ltion of the
others. Consistency is fragile and can be easily undermined by one bad interfa_e.
Histo-Scope & NPlot

Histo-Scope is a tool to select and display histograms, n-tuples, and scalar values from a prog,ram
as _lata is being created or analyzed. Using Histo-Scope, physicists can interactively browse
through the large quantities of statistical data that their analysis and data acquisition programs
gather as they run. lt is intended to complement existing physics applications, providing
'h'nmediate access to data while a program is running, as well as new interactive methods for
viewing data.
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Figure1. ViewingDatawithHisto-Scope

Histo-Scope has two parts. The first is a small library of routines which can be inserted in physics
analysis or data acquisition code without significantly changing its behavior. No restrictions are



placed on the user aria.lysisprocess except that it must periodically call an update routine, lt does
not need to run on a workstation, and is not linked with any graphical user interface code.

The other part is the "scope" process. Invoked upon user demand, the scope requests and displays
data continuously from the analysis process. The scope concentrates on interacting effectively with
users. It responds to mouse and keyboard input and provides the interactive graphing and plotting
that enable users to view their data quickly and effectively. The scope program can 'alsoread
HBOOK and Histo-Scope format files.

NPlot ksa tool for quickly plotting columnar data from text files. It is a simple re-packaging of the
Histo-Scope n-tuple interface with a tile reader.

Both Histo-Scope and NPlot produce highly interactive graphs and plots. These include: multi-
variable graphs, two and three dimensional scatter plots, and one and two dimensional histograms.
Users can rescale, zoom, and pan these plots by dragging on axis scales and other sensitive areas.
The three dimensional widgets, 2D histogram and 3D scatter plot, can be rotated accurately using
the mouse as a hand on a "virtual trackball" sphere surrounding the plot. The plots can also be
combined with animation sliders to reflect additional variables or to rebin histograms.

NEdit

NEdit[ 1] is a GUI style plain text editor, lt was originally intended as a project benchmark, to
establish standards tor program structure, file handling, accelerator keys, and general GUI
operation, but not to be released for widespread use. However, it has since proved itself to be a
superior replacement for the conventional Unix text editors. NEdit serves as both a good
introduction to Motif based tools, and an illustration of the advantages of GUIs. It supports
programmers with features such as: auto-indent, block indentation adjusunent, and parenthesis
matching. People who are used to character based editors like eft, vi, and emacs are usually
hesitant to try a new editor because of the time investment in learning the commands. NEdit, on
the other hand, requires no such investment. Though it appears much simpler, the functionality
that it provides is as complete. A naive NEdit user can usually work faster than an expert edt user!

Visajet

Visajet[2] is a GUI front end to the ISAJET[3] Monte Carlo event generation program. Physicists
can use Visajet instead of composing an ASCII file of "input cards" ISAJET uses for its run
parameters. Running Visajet allows the physicist to see ali the options that are available, explore
them, glance through default values, and change them in preparation for a run. Visajet then allows
the physicist to start ISAJET under control of a run panel and provides graphical routines to
visualize the event data as ISAJET is running. Like Histo-Scope, the Visajet process is separate
from the ISAJET process, allowing the event generating process to reside on another machine.

Programming Utilities

To develop the above applications, we created a fibrary of common software components. These
include: PostScript drawing routines which parallel X calls for hardcopy output; dialogs for
printing, opening f'des, saving files and help; modal dialogs for errors warnings and simple
prompts; interactive plotting widgets; support for Greek, superscript, and subscript characters; and
convenience routines to simplify Motif programming.

The most sophisticated components that we have produced are, of course, the interactive plotting
widgets used in Histo-Scope and NPlot. These can be used like any other Motif widget, and
supply the complete direct-manipulation interface that they do in the programs.

Our Experience
Although the products that we have created work very reliably and are easy to use, their
development was painful because the design and documentation for both Motif and X-Windows
are extremely poor. When we started the project, there were serious bugs in both X and Motif that
actually precluded their use in a number of areas. Though the quality of X and Motif has been
improving continuously, many bugs still exist and we have had to put serious effort into working
around them.
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Even though we were working on machines capable of incredible graphics performance, we had to
invest considerable development time to achieve adequately fast, smooth animation because of
inefficiencies in X-Windows. For simple menu and di'dog interaction, the combination of X and
Motif require a 10 MIP machine with 16megabytes of RAM to achieve the graphics performance
of a Mac Plus (a 0.5 MIP machine with 256K of RAM).

Creating consistent interfaces in the Motif environment was ch',dlenging. We began with the Motif
Style Guide. Where there were holes in the Motif standards, we filled in from the Macintosh and
Microsoft Windows. Unfortunately, the Motif Style Guide is mostly holes, and interface styles
already vary widely among the commercially available Motif software packages. The Open
Software Foundation does not seem to consider consistent interfaces to be an important goal.
Properly designed programs must support two different pointer focus modes, different menu
selection styles, different font sizes, _mdendless user tailoring of appearance. There are no
standard types for exchanging data other than text so, for example, programs are not guaranteed to
handle cut and paste of graphics from other programs.

As of yet, there is no re',dlyquick way to generate good graphical interfaces. There are aides that
can make programming GUIs easier, and some environments are much easier to program for than
others. For example, we could develop interfaces much faster if physicists were willing to move
to the NeXT computer. From the point of view of GUIs, NeXT Step is superior in ali respects,
and tailor made for users like us who would like to develop GUIs less expensively for limited
numbers of users. Of course, NeXT Step is proprietary, does not run on the fastest CPUs, and
except for developing GUIs, irs programming environment is no better. For Motif, Interface
building tools are available and we employed them in the initial stages of ali of the products. Motif
interface builders are good tor initially laying out panels of buttons and controls, but become
progressively more burdensome as you complete an interface and try to make it efficient for expert
users.

Despite the problems, as our experience with the technology and our library of GUI components
grows, it becomes easier and faster for us to create similar software.

Conclusion

Commercial software developers usually estimate the percentage of development time spent on the
user interface to be about 75%. In HEP, this additional time is hard to justify where a software
product may have less than 50 users.

Beoause GUIs can quadruple development time for a project, they are not necessarily desirable on
ali HEP applications. To realize the benefits of GUIs in HEP, we need to identify programs tha',
are heavily used, or that depend on the unique properties of GUIs. This paper is too short to
adequately cover the topic of creating complete, efficient, and consistent interfaces, except to say
that it is well understood, and the benefits can be considerable. There are a number of good books
on the subject, such as Designing the !nterface[41, by Ben Schneiderman. Also see [5].

[1] NEdit Users' Guide, Fermilab Computing Division Library document #PUO 135

[2] _VVisaietUsers' Guid¢, Fermilab Computing Division Library document #PUO 136

[3] ISAJET 6.34, A Monte Carl9 Evcn_ Generator for P-P and Pbar-P Reactions, F. Paige and S.
Protopopescu, Brookhaven National Laboratory, Upton, NY 11973.

i4] D__esigningthe Interface, Ben Schneiderman, Addison Wesley, 1987.

[5] Programming Graphical User Interfaces (Notes from 1/22/91 Talk). Fermilab Computing
Division Library document #EN0089.
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