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L Energetic particle drive for toroidicity-induced A l h h  
eigenmodes and kinetic toroidicity-induced Alfv6n 

eigenmodes in a low-shear tokamak 
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and 

S.E. Sharapovt 
JET Joint Undertaking, Abingdon, Oxfordshire 0x14 3EA, UK 

Abstract 

The structure of toroidicity-induced Alfvkn eigenmodes (TAE) and kinetic TAE (KTAE) 
with large mode numbers is analyzed and the linear power transfer from energetic particles 

to these modes is calculated in the low shear limit when each mode is localized near a single 
gap within an interval whose total width Aout is much smaller than the radius T,,, of the 

mode location. Near its peak where most of the mode energy is concentrated, the mode has 

an inner scalelength Ai”, which is much smaller than AoUt. The scale Ab is determined by 

toroidicity and kinetic effects, which eliminate the singularity of the potential at the resonant 
surface. This work examines the case when the drift orbit width of energetic particles A, 
is much larger than the inner scalelength Ai*, but arbitrary compared to the total width of 
the mode. It is shown that the particle-to-wave linear power transfer is comparable for the 

TAE and KTAE modes in this case. The ratio of the energetic particle contributions to the 

growth rates of the TAE and KTAE modes is then roughly equal to the inverse ratio of the 
mode energies. It is found that, in the low shear limit the growth rate of the KTAE modes 
can be larger than that for the TAE modes. 
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I. INTRODUCTION 

The problem of alpha particle confinement in a deuterium-tritium plasma has been long 

recognized to 5e an extremely important problem for achieving ignition in a tokamak reac- 

tor. For typical reactor parameters, the fusion-produced 3.5 MeV alpha particles comprise 

a considerable part of the total energy and have a highly-peaked radial profile.' Since these 

particles are super-Alfv6nic, they are subject to enhanced transport that can result from 

the excitation of shear Alfv6n modes or other magnetohydrodynamic (MHD) modes. Re- 

cent experiments2t3 with neutral beam injection, have confirmed that Afi6.n instabilities can 

indeed cause loss of energetic ions. 

The purpose of the present work is to calculate the energetic particle drive for two types 

of weakly-damped Alfv6n eigenmodes in a tokamak, namely, the toroidicity-induced Alfv6n 

eigenmode (TAE)*-? and the kinetic TAE (KTAE).8"0 The energetic particle drive for the 

TAE was initially calculated by Fu and Van Dam1' in the zero orbit width approximation. 

Later, it was shown analytically'* (and subsequently confirmed n~merical ly~~) that finite 

orbit width, even without finite Larmor radius (FLR) effects, can change the TAE growth 

rate from increasing linearly with toroidal mode number, to becoming independent of n, 

when the alpha particle radial excursion exceeds the inner layer spatial structure of the 

eigenfunction but is still small compared to the global ("outer") mode scale length. A more 

recent analysis14 of the TAE and KTAE instabilities also has the restriction that the particle 

orbit width is small compared to the outer mode scale 1ength.h this paper, we concentrate on 

the previously unexplored case in which the excursions of the alpha particles are comparable 

to or larger than the outer width of the excited mode. This situation is particularly relevant 
. .  

to the central region of an ignition plasma, where a large fraction of the alpha particles are 

concentrated. Their orbit widths can be comparable to the outer width of the mode even 
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for moderate values of the poloidal mode number, m x 3 - 6. 

Our consideration will be restricted to the limit of low shear and large mode numbers, in 

which case each TAE or KTAE mode can be treated within a “single-gap” approximation. 

In addition, we assume that plasma pressure is negligibly small and that the tokamak has a 

large aspect ratio, for which the equilibrium magnetic field has circular flux surfaces. 

We will employ a perturbation treatment, which requires the instability growth rate to 

be small compared to the characteristic frequency separation in the discrete mode spectrum. 

This condition is not a severe restriction since the number of energetic particles is typically 

small. In accordance with the perturbative approach, we first determine the mode structure 

without any drive and then calculate the energetic particle drive for this mode structure. 

In addition to the drive, contributions from various damping mechanisms must be included 

in the total growth rate in order to determine the instability threshold for a particdm 

mode. Each of these damping mechanisms, such as electron collisional darnpi~tg,~J~ radiative 

damping,8 ion Landau damping16 and continuum dampine7 can be treated separately and 

independently of the drive. Most of the damping mechanisms, except the radiative damping, 

are also presented in Ref. 14. 

The discussion of the mode damping goes beyond the scope of this work. However, an 

important point to be mentioned is that, in contrast to the drive, the damping rates due 

to ion Landau damping, continuum damping and radiative damping can be exponentially 

sensitive to variations of the plasma parameters. 

It should be noted that, in the large orbit width limit, the power transfer from the ener- 

getic particles to TAE and KTAE mode is independent of the inner structure of these modes. 

The instability growth rate can then be expressed as the ratio of the power transfer (which 

is insensitive to the inner mode structure) to the mode energy (which is mostly determined 

by the inner scale length). The power transfer turns out to be similar in magnitude for TAE 
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and KTAE modes. Therefore, to compare TAE and KTAE growth rates, one should actually 

compare their mode energies expressed in terms of the inner scale lengths of the modes. 

The rest of the paper is organized as follows. In Sec. 11, we discuss the TAE/KTAE 

mode structure in the low-shear limit, which is particularly important in the center of a 

tokamak. Our method of the mode structure analysis is Herent from that used in Refs. 9 

and 10: we solve the problem directly in real space, rather than Fourier space, which should 

be physically more intuitive. In Sec. 111, we use the obtained mode structure to calculate 

the mode energy in terms of the amplitudes of the uncoupled asymptotic MHD solutions 

away from the gap. In Sec. IV, we find the linear power transfer to the TAE and KTAE 

modes from energetic particles. This section is based on the Lagrangian description of the 

wave-particle interaction, which is particularly convenient because it allows straightforward 

generalization to the nonlinear case.17 In Sec. V, we discuss the particle orbit width effect 

of the instability growth rate and compare the growth rates for the TAE and KTAE modes. 

Finally, in Sec. VI, we briefly summarize the results of this work. Appendix A presents 

detailed calculations of the wave-particle coupling integral in the large-orbit limit. 

I 11. TAE AND KTAE MODE STRUCTURE IN THE LOW SHEAR 
LIMIT 

Both TAE and KTAE modes are kn0wn~1~  to be associated with special magnetic surfaces 

(“gap” surfaces) at which the condition 

is satisfied, where m and n are the poloidal and toroidal mode numbers and Q(T) is the 

safety factor as a function of minor radius T .  At the surface T = r,,,, defined by Eq. (I), 

two cylindrical-geometry shear f i 6 n  modes with the poloidd mode numbers m and m - 1 

and the same toroidal mode number n are subject to strong poloidal coupling because they 

4 



both satisfy the local dispersion equation w = -kJlm(Tm)vA(Tm) = kllm--l (Tm)vA(Tm), where 

k l l m ( ~ )  = [nq(r) - m]/Rq(r) is the parallel component of the wave vector, R being the 

major radius of the tokamak magnetic axis. For every poloidal harmonic m (here after n is 

k e d ) ,  there is also another surface T = Tm+1, defined by q(rm+1) = (rn+ 1/2)/n7 where this 

harmonic is coupled to its upper sideband (rn + 1). The distance between the surfaces t m  

and r,+l depends on the magnetic shear S = T ~ ' ( T ) / Q ( T )  and can be estimated as 

At a sufficient distance from the gap surfaces, both the TAE and the KTAE can be 

described by the ideal MHD equations, which determine the so-called outer structure of 

the modes. In the high-rn limit these MHD equations reduce to a single equation for each 

poloidal harmonic & ( T )  of the wave electrostatic potential 4, expressed as 

Here (T ,  29, c p )  are the radial, poloidal, and toroidal coordinates. The resulting equation has 

the form6 

with the boundary condition & ( T )  + 0 at I T I-) 00. It follows from Eq. (4) that the outer 

width of the mode is 

Aout = rm/m . (5 )  

In the low-shear limit, Aout is much smaller than the distance between the gap surfaces 

defined by Eq. (2). Therefore, the coupling between different gaps is &o small in this limit. 

Each eigenmode is then localized near its own gap surface, and there are only two poloidal 1 .  

harmonics (e-g., rn and rn - 1 at T = rm) that determine the mode structure. 

To describe the mode structure near the gap surface, we must include toroidicity-induced 

coupling and nonideal effects in Eq. (4). The appropriately generalized set of equations for 
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the two coupled poloidd harmonics has the formg: 

with E = 5rrn/2R and the finite Larmor radius parameter p defined by 

where pi2 = T,/miw&; here 7'' and T, are the temperatures of the bulk electrons and ions 

respectively, and wgi is the ion cyclotron frequency. 

Toroidicity and nonideal effects are important only in the vicinity of the gap surface. 

These effects determine the inner scale of the mode, which is small compared to Aout. Nev- 

ertheless, most of the mode energy is concentrated in this inner region. 

In the inner layer, Eqs. (6) and (7) can be integrated once to give a set of equations for 

the radial derivative quantities U 9 and V E 9: 
8U 
d z 2  

x 2- + (g+z)U+V = c m  , 

d2V 
dz2 

x 2 -  + (9: - z)V + u = -cm-l , (9) 

where z = 4 g - I  [nq(r) - m + 1/21 is a dimensionless radial variable, X is the normalized FLR 

parameter 

and g is the frequency parameter defined by 

E 

In terms of the parameter g, the frequency gap corresponds to the interval -1 < g < +1, 

with g = A1 being the upper and lower boundaries of the gap, respectively. The constants of 
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integration C, and Cm-1 in Eqs. (8) and (9) must be chosen so that the solution of Eqs. (8) 

and (9) matches onto the solution of Eq. (4). 

We now examine the details of matching these two solutions. By expanding ICllm(') about 

the gap surface in the low-shear limit, we rewrite Eq. (4) in the following form: 

where IC = nq(r) - m + 1/2. The term x 9 on the right-hand side of this equation can be 

treated as a perturbation. Thus, to lowest order, we neglect this term and write the solution 

of Eq. (11) as 

where Ko(x) is the zeroth-order Macdonald function.'8 The integration constant Cm in 

Eq. (12) ensures that d4,/dr matches the asymptotic solution of Eqs. (8) and (9). It 

follows from Eq. (12) that, to lowest order in the shear, the outer solution is an even func- 

tion of x. To find the odd parity corrections to & and 4m-1, we substitute Eq. (12) 

into the right-hand side of Eq. (11) and integrate Eq. (11) with the boundary conditions 

q5m(-oo) = &,(+oo) = 0. We then find that & has a discontinuity at small values of 5: 

A similar procedure applied to 4m-1 gives 

The jump conditions (13) and (14) are to be matched by the asymptotic solution of Eqs. (8) 

and (9). This requirement leads to dispersion relations for both the TAE and KTAE modes. 

We first reproduce the dispersion relation and the structure of the TAE mode, and then 

proceed to the kinetic TAE modes. 
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A. TAE mode 

This mode exists for small A, namely X < S2. Under somewhat stronger restriction, 

S2, Eqs. (8) and (9) become algebraic equations of the form 

( g + z ) U + V = C m  7 ( g - z ) V + U = - C m - 1  . (15) 

Note that, in the opposite limiting case (A >> S2), this mode actually disappears because of 

the strong radiative damping. The solution of Eqs. (15) is 

(16) 
z c m  

(1 - g2)'/2 (1 - g2)' /2 2 

gem-1 + c m  
(1 - g2)1/2 (1 - g2)'/2 2 

tan-l + - In I z2 + (1 - g2) 1 +const , ($$=-  gcm + Cm-1 

z cm-1  + - In 1 z2 + (1 - g2) I +CO& . (17) = 

The inner scale length of the TAE is therefore z - (1 - g2)'i2 or, in dimensional form, 

Equations (16) and (17) give the following jumps of & and &,-I at the inner layer: 

By matching Eqs. (19) and (20) and (13) and (14), we obtain 

g = - l + T ,  12sz s a l ,  

and 

With the dispersion relation (21), Eq. (18) for the mode inner width takes the form 

C-S Aout . I ET, 
= E 

Finally, in the case of small shear, we note that the inner structure of the TAE mode is 

predominantly determined by the logarithmic part of the expressions in Eqs. (16) and (17). 
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B. Kinetic TAE modes 

In contrast with the TAE mode whose eigenfiequency is located near the bottom of the 

gap (i.e., near g x -1) in the low shear limit, the spectrum of the KTAE modes tends 

to concentrate close to the top of the gap (i.e., near g x 1). In order to analyze the 

KTAE modes, we rewrite Eqs. (8) and (9) by introducing symmetric and antisymmetric 

combinations of U and V: 

Then we obtain the following equations: . 

28f - + ( g - l ) f + p z F = l .  dz2 

where p = (Cm-i - Cm)/(Cm + Cm-1)- 

Since g is close to unity, we need to retain the X2 term only in Eq. (26), whereas in 

Eq. (25)  the term X2dZF/dz2 can be dropped compared to (g+ l)F. By neglecting this term 

we actually neglect the radiative damping of the KTAE modes. The modes will then appear 

to be real eigenmodes, whereas their life time is, in fact, finite because of the tunneling.8 After 

the mode structure is found in the nwtunneling limit, the small damping due to tunneling 

can be calculated in a straightforward way. 

With this simplification, Eqs. (25) and (26) reduce to a single equation for f(z): 

22  z 
2 

- - f = 1 + q .  8f x2- + (g - 1)f 
dz2 

We now find the solutions of Eq. (27) in two opposite limits, namely 1.1 --.) 0 and p + 00. 

These solutions represent two independent polarizations of the KTAE modes. It can be 

proved that no value of p other than p + 0 or 1.1 + 00 is allowed in this problem; thereby 

the consistency of our approach can be justified. 
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We introduce the notation f- for the p -+ 00 solution that satisfies the equation 

with the constraint 

which follows from the jump conditions (13) and (14). Note that f- is obviously an odd 

function. Similarly? the p + 0 solution is described by an even function f+ that satisfies the 

equation 
, 2 @ f +  z2 

- + ( g - l ) f f - - f f = l  ? 
dz2 2 

with the constraint 

It follows from Eq. (28) that the characteristic width of f‘ is of the order of All2.  If we 

now estimate f -  M p/X1i2, then for X << 9 the left-hand side of Eq. (29) will formdy be 

much smaller than the right-hand side. This indicates that the actual value of f’ is much 

larger than p/A112. To enhance f - compared to this rough estimate, we must have the value 

of g be very close to an odd mode eigenvalue of the Schrtkiinger equation for a harmonic 

oscillator, 

i.e., 

g M 1 + X(4p+ 3 ) / J z ,  (33) 

with p = 0,1,2, ... . Equation (28) will then provide a strongly resonant response to the 

“external force” p2/2, which will make f - close to the p t h  odd eigenfunction of Eq. (32); . 

where H2p+l is the Hermite polynomial, and = z ( ~ X ~ ) - ’ / ~ .  
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The appropriate solution of Eqs. (28) and (29) can be constructed perturbatively. Namely, 

we seek the solution-of Eqs. (28) and (29) in the form 

f - = A f p + 6 f ,  

9 - 1 = A(4p + 3 + A-) /Jz  , 

where A is a constant, Sf is much smaller than f', and A- is a small corr 

(35) 

n to the 

eigenvalue given by Eq. (33). We substitute expressions (35) and (36) into Eq. (28), multiply 

the equation by fp, and integrate over z to obtain 

Finally, we use Eq. (29) to find 

:ti 

We now turn to the solution of Eq. (30). Similar to f', the function f+  is localized 

within the width Az = Al l2 .  The magnitude of f+ is of the order of 1/X.  Since X is a small 

parameter, this shows that the left-hand side of Eq. (31), which scales as X-ll2,  is typically 

much larger than the right-hand side. One can then simplify Eq. (31) to 

Jdzf' = 0 .  (39) 

Same Eq. (30) with the constraint of Eq. (39) allows a straightforward analytical solution 

that can be obtained in Fourier representation which transforms Eq. (39) into the condition 

that the zeroth Fourier component of f+  equals zero. The eigenvalues for this problem are 

equal to the odd eigenvalues given by Eq. (33) for the Schrijdinger equation for an oscillator. 

The fact that the right-hand side of Eq. (31) is actually nonzero will only give a small 

correction to the eigenvalue g as determined by Eq. (33). This correction can be calculated 

perturbatively as follows. We seek the solution of Eqs. (30) and (31) in the form 

(40) 
Jz f+ = +f,+ + S f )  9 

11 



g - 1 = X(4p + 3 + A')/JZ (41) 

with I Sf/f,' I<<  1 and I A+ I < <  1. The function fp' is defined as the solution of the equation 

d".f; + (4P + 3)f; - e"; = 1 7 

where 6 = 2(2X2)-'/*. The explicit form of f: for the lowest eigenvalue ( p  = 0) is 

For all other eigenvalues, f: can be constructed with the use of the recursion reation 

which follows from Eqs. (62) and (63) of Sec. 111. The validity of Eqs. (43) and (44) as well as 

the fact that f; satisfies Eq. (39) can be checked directly. We now substitute the expressions 

in Eqs. (40) and (41) into Eq. (30), multiply the equation by f:, and integrate over I. By 

comparing the result with Eq. (31) we find that 

This formula includes the value of the integral JR(f;)2, which will be obtained later in 

Sec. 111. 

Thus, we conclude that, for very small values of A, namely X << 9, the eigenvalues of 

both even and odd KTAE are close to the eigenvalues (33) for the odd eigenmodes of Eq. (32). 

This conclusion is consistent with the earlier observation of the eigenvalue pairing, made by 

Berk, Mett, and Lindberg.'* Moreover, the eigenvalues for the even KTAE modes are close 

to (33) for any X << 1. The situation is somewhat different for the odd KTAE modes: their 

eigenvalues remain close to these of Eq. (33) only as long as X << S2 [see Eq. (38)]. Equation 

(38) breaks down when X exceeds S2. At this point, the odd KTAE eigenvalues shift closer 

to the eigenvalues for the even states of the harmonic oscillator, 

. ,  
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where they remain as long as X satisfies the condition S2 << X << 1. This result follows from 

the solution of Eq. (B) ,  Fourier transformed, with the constraint 

/&(I+$) = o .  

This constraint is a simplification of Eq. (29) valid when S2 << X << 1. 

In order to find the odd KTAE solution in the limit S2 << X << 1, we, following the 

analogy with the f+-case, seek the solution of Eqs. (28) and (29) in the form 

where f; is the solution of the equation 

Then the correction A- to the eigenvalue can be found to be 

The explicit expression for the integral J(f;)24 in this formula will be justified in Sec. 111. 

To complete this section, we present the solution of EQ. (49) for the lowest eigenvalue ( p  = 0): 

111. MODE ENERGY 

The energy of a radidy localized toroidal Alfvh eigenmode can be written as 

- .  
(52) 

6W = jdqd19Rrdr- (6Bd2 
4 K  

as long as 6B9 >> 6B,. This expression includes the perturbed plasma kinetic energy that is 

equal to the perturbed magnetic energy. 
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For TAE modes with the mode structure given by Eqs. (16) and (17), SW takes the form 

16nmR c2 
6W = TClt,. 

E ‘ A  
(53) 

To calculate the wave energy for KTAE modes, we rewrite 6W in terms of the quantities 

U and V as follows: 

For the even KTAE-modes ( p  -, 0), the integrand reduces to 

For the odd modes ( p  + m), we have 

We first calculate the energy of the odd KTAE modes for the case when A << 9, when 

f -  is given by Eqs. (35), (37), and (38) with fp defined by Eq. (34). Then we obtain 

where table integrals of the Hermite polynomials have been ~5ed.l’ The final expression for 

the energy of these KTAE modes is 

where F(p)  = 22p(p!)2/(2p + l)!. At large values of p ,  the function F ( p )  simplifies to the 

following asymptotic expression: 

In order to find the dependence of the odd KTAE mode energy on the quantum number 

p in the limit S2 << X << 1, and also the dependence of the even mode energy on p for all 

X << 1, we rewrite Eq. (42) in the form 

S+S-f,+ + 4(p + 1) f .  = 1 , (60) 
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where S* = d / @  =t 5. Similarly, Eq. (49) can be rewritten as 

(61) S+S-f; + (4p + 2) f; = t$ . 

By applying the operator S- to Eq. (60) and comparing the result with Eq. (61), we obtain 

(62) f;+l = -s- fp' . 

An analogous operation with Eq. (61) gives 

(4p + 2)f; = 1 - s- f; . 
Two recursion relations can now be derived for the integrals of (f,+)2 and (f;)2: 

where 

Equations (64) and (65) show the following behavior of the odd mode energy with p :  

Note that, for large values of p ,  the energy increases as d m .  For the even mode, 

Eqs. (64) and (65) give 

In contrast with the one for odd mode, this function asymptotically decreases with p .  We 

finally include the obtained dependence on the quantum number p into the expressions for 

the energy of the odd and even KTAE modes, which gives 
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IV. PARTICLE-TO-WAVE POWER TRANSFER 

In this section, we use the mode structure described in Sec. I1 in order to calculate the 

energetic particle contribution to the growth rate of Alfv6n modes. Our derivation of the 

growth rate will be based on the wave-particle Lagrangian L that caa be written as a sum 

of three terms: 

L = L, + Lp + Lint (70) 

Here, Lw is the wave Lagrangian for linear Alfv6n modes, L, is the energetic particle La- 

grangian for their unperturbed motion in a tokamak, and Lint is the interaction term that 

depends on the dynamical variables of both waves and particles. 

In the absence of nonideal effects, the Lagrangian for shear Ah6n waves has the following 

form: 

where a@/& = 4 is the electrostatic potential and is the direction of the unperturbed 

magnetic field BO. 

We choose @ to be a superposition of linear eigenmodes $J~(?J, cp, T )  with eigenfrequencies 

W n  : 

@ = An(t)+* exp(-iw,t - ia*(t)) + c.c., 
n 

where the mode amplitude &(t) and the phase an(t) are assumed to be slowly varying 

functions of time. This representation reduces L, to 

It can be shown that this expression is also valid when nonideal effects are important near, 

the gap surface; the function & should then be the eigenfunction with nonideal effects taken 

into account. This can be verified by generalizing the Lagrangian given by Eq. (71) in such 

a way that the modified Lagrangian gives Eqs. (6) and (7) for the linear modes. 
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To describe the motion of the energetic particles, we use the guiding center Lagrangian 

derived by Littlejohn.20 For a large-aspect-ratio tokamak with circular flux surfaces, the 

unperturbed Lagrangian has the form21 

- 1 Mu; - pB0 (1 - T  COS^) , 
2 (74) 

where p = Mu2,/2B is the magnetic moment of the energetic particles. In this Lagrangian, 

the dynamical variables are: minor radius T ,  toroidal angle cp) poloidal angle 29, and pardel 

velocity u I I .  We restrict ourselves to a consideration of passing particles only, in which case 

ull is nearly constant along the orbit. We also note that change in "11 due to the low frequency 

Alfven perturbations is negligible. Thus, the toroidal motion of a passing particle can be 

described by 

cp = cpo + q t / R  9 (75) 

where cpo is the initial value of the toroidal angle c p .  

With this simplification, cp  and "11 become given quantities, rather than dynamical vari- 

ables. The resulting reduced Lagrangian, which now describes the particle motion in the 

poloidal cross section, has the form 

The interaction term in the Lagrangian (70) has been derived in Ref. 21. In the zero 

Larmor radius limit, we have 

particles 

We now simplify the particle Lagrangian L, by changing independent variables from 

(T, 19) to ( T I ,  a), defined by 

r = 7 + Ab cos8,  
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where F is the mean radius of the particle orbit. The width of the particle orbit Ab is defined 

as 

and it is assumed that Ab << F. 

Transformations (78) and (79) change Lp to 

The total Lagrangian for energetic particles and a single AlMn mode can now be written as 

+ R~ Ae-iofie-Gt+invo+ii8 - 
1 

particles 1 

with interaction amplitudes 4 ( F )  given by 

where 
1 2 1  

2n 0 +n,m(r) - J $n(r ,  6, CP) ex~( im6  - i n ~ ~ ) d f l Y  (84) 

F and 8 are related to r and 6 by Eqs. (78) and (79), and other notations are is = wn -null/R 

and i l ~  uII/q(F)R. 

The Lagrangian given by Eq. (82) leads to the following set of equations for particle 

motion and wave dynamics: 
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+ Re ifi exp( -icr - Gt + incpo + i28) = 0 , (87) A- * 2wn  Ju I VllCln I2  
v i  particles 1 7r 

+ Re 1 fi  exp( -icr - iZit + inpo + 218) = 0 . (88) 
Aci-JdV c2w, I VllCln I 2  

4 particles f x 

By linearizing Eqs. (85)-(88) and integrating them along the unperturbed particle orbits we 

obtain the following expression for the wave growth rate 

A I d  
7 = - = -  A particles 1 

By its definition, the growth rate can also be written as half the ratio of the particle-to-wave 

power transfer P to the wave energy 6W: 

P y = -  2sw ' 

where 

By combining Eqs. (89)-(91) we find 

In contrast to the wave energy, which is mostly determined by the inner scale length of the 

mode, the power transfer is insensitive to the mode inner structure. This conclusion requires 

only that the particle orbit width A, be greater than the inner scale length of the mode.12 

Therefore, it is allowable to formally replace the exact eigenfunction $n in the interaction 

amplitude with the asymptotic expression for $n that describes the outer mode structure. 

Despite the logarithmic singularity in the outer solution (12), the integral for f i  converges 

due to the finite particle orbit width. 

Since Fl enters y and P as a coefficient in front of the 6-function, we only need to calculate 

FL for Zi = 10. We also take into account that, in the low shear limit, each eigenmode has 
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only two components (m and m - l), with $n,m and +n,m-l given by 

where the plus sign in Eq. (94) refers to the TAE and even KTAE modes, and the minus 

sign refers to the odd KTAE modes. Equation (83) with the mode structure of Eqs. (93) 

and (94) gives 

I Ab x exp (-imd + im, sin 8 - ala) d8 . r (95) 

We now substitute 8 into Eq. (92) for the power transfer and note that the s u m  over the 

energetic particles can be changed to an integral over the phase volume with the unperturbed 

particle distribution f. After integration by parts over F7 we obtain 

After the &function is eliminated by the velocity space integration) the integrand) except 

for &) becomes a smooth function of r', with the spatial scale length determined by the 

distribution of energetic particles. The function F,,  unlike other term,  is localized within a 

much narrower interval, which is determined by the particle orbit width and the outer mode 

width. Hence, the F integral only involves F,, while all other functions of F in Eq. (96) can 

be evaluated at the mode location. With this approximation we find 

where the coupling integral I is defined as 

( s ) p  Ab ) I" dd /d2" d8(s f ( s  - l)ei')(s f ( s  - l)e-ie) 
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For small values of &,/Aout, this integral has been calculated in Ref. 12. For large values of 

&/Aout, it is calculated in Appendix A of the present work. The results of both calculations 

can be summarized as follows: 

1 
I ( s , D )  = 47r2-(s2 D + (S - 1)2) , D >> d-, (99) 

) , D <  d-. (100) 
(s - 1 ) 2  

I (s, 0)  = 16;rr2D 

V. LARGE ORBIT EFFECT ON THE MODE GROWTH RATE 

In this section, we use the term “large orbit” as opposed to the term “finite orbit” of 

Ref. 12 in order to emphasize that the orbit width can now be arbitrary (not necessarily 

small) compared to the outer width of the mode. Of particular interest is the case in which 

these two quantities are comparable to each other. Note that the inner scale length of the 

mode is then negligibly small compared to the orbit width. Our conclusion here will be that 

the large orbit effects make the energetic particle drive a decreasing function of the mode 

number for both the TAE and the KTAE modes, when the mode number is sufficiently large. 

We will evaluate the drive for a slowing-down distribution funct&on of the energetic ions, 

taken in the form 

where Q(z) is the step function, vo is the injection velocity of energetic ions, and h ( ~ )  with * 

n q / 2 1  is the pitch-angle distribution. We choose 
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where 60 is the anisotropy parameter. For an isotropic distribution we have KO >> 1, so 

that h = 1. The distribution function in Eq. (101) is normalized to the average beta of the 

energetic ions, i.e., 

,& = (8nM,/3B2) 1 d3vv2 f . (103) 

We first calculate the power transfer P in Eq. (97) for a strongly anisotropic beam-like 

distribution with KO << 1 assuming that vo > VA. In this case, the major contribuion to P 

comes from the principal resonances (s = 0 and s = 1). In Fig. la we show the numerically 

evaluated coupling integral I ( D )  = I (0 ,D)  = I(1, D) for these resonances. Shown by the 

dashed line in the same figure is the function I ( D )  given by the asymptotic formulas (99) 

and (100). Except for intermediate values of D, these formulas show a reasonably good 

agreement with the numerical results. The velocity integration in Eq. (97) eliminates the 

delta function and gives 

where D = ( ~ ~ v A ) / ( T , w ~ )  and the function I ( D ) / D  is shown in Fig. lb. We now find from 

Eqs. (104), (90) and (53) that the contribution of the energetic ions to the growth rate of 

the TAE mode is 

where D = ( ~ ~ v A ) / ( T , w B ) .  In accordance with the result obtained in Ref. 12 for moderate 

values of m, this growth rate is relatively insensitive to the mode number m as long as the 

outer mode width Tm/m exceeds the particle orbit width. For larger d u e s  of m, the growth 

rate decreases with increasing m due to the orbit width effect. Using the fact that the 

principal resonance terms in the particle-to-wave power transfer are identical for the TAE 

and KTAE modes, we can write the odd KTAE growth rate as follows: 
1 .  
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112 

, S2 < A <  1 .  (107) YKTAE 
WKTAE 
- = --- 

The second of these two equations shows that the growth rate for the KTAE mode can be 

greater than that for the TAE mode, when the condition S2 << X << 1 is satisfied. Moreover, 

under the same condition, the TAE mode has a much stronger radiative damping than that 

for the KTAE mode. This condition obviously requires that the shear be small. Otherwise, 

the KTAE mode appears to be less unstable than the TAE mode, in agreement with the 

results of Ref. 14. 

We finally present the expression for the power transfer for the case in which the distri- 

bution function is isotropic. Similarly to Eq. (la), we retain only the principal resonances 

and use Fig. 1 for the coupling integral. We then obtain 

where 
qm(vi + v2) D =  

~ V A ~ ~ W S  ' 

For moderate mode numbers, this expression reproduces the corresponding result obtained 

in Ref. 12. For large mode numbers, Eq. (108) shows that the drive decreases due to the 

orbit width effect regardless of whether it is TAE or KTAE mode. 

VI. SUMMARY 

In conclusion, we have obtained the eigenfunctions and the eigenvalues of the TAE and 

KTAE modes in the low-shear limit by solving the mode equations in real space. Within 

this approach, the initial mode equation splits into two separate equations: one for the even 

parity modes and one for the odd parity modes, which allows us to relate the spectrum of the 

KTAE modes to the spectrum of a harmonic quantum oscillator. We have also calculated 

the energetic particle drive for both the TAE and the KTAE modes without restrictions on 
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the ratio of the particle drift orbit width to the “outer” mode width. We note that the 

particle-to-wave power transfer is insensitive to the “inner” width of the mode, as long as 
5. * 

the particle orbit width is greater than the mode inner scale length. Our analysis shows that 

a) the growth rate and the inner width of the odd KTAE modes are typically larger than 

those for the even KTAE modes; and b) for large mode numbers, the energetic particle drive 

for all modes decreases due to the orbit width effect. A distinctive feature of the low shear 

case is that it allows the KTAE modes to be more unstable than the TAE mode. 
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Appendix A: Coupling Integral 

The general form of the coupling integral given by Eq. (98) is 

I ( s ,  0) = dt9 J,'" d8[s f (s - l)e"][s f (s - l)e-ie] 

For large values of D, the principal contribution to this integral comes from the integration 

region near the line 19 M 8, so that we have approximately 

I = 1'" d29 [s2 + (s - 1)2 f 2 4 s  - 1) cos291 d(8 - 29) exp (i(8 - S ) D  cos6) 

By changing the integration variable from (8 - 6) to x = (8 - 6)0 ,  we obtain 

x / d r ~ o ( / r / ) ~ ~ ( l r - s s i n 2 9 1 )  . 

The term with the f sign does not contribute to this integral because cos6 changes its sign 

when the integration variable changes from 29 to R - 6, whereas other terms of the integrand 

remain unchanged. Therefore, 

Here, we have used the symmetry features of the integrand in order to present I as twice the 

integral over 29 from 0 to 7r. We now introduce a new integration variable y in place of of 2: 

y = x s i n $ - r .  
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Integration over y gives 

Finally, we obtain 
I = 3  47r2 (2 + (s - 1)2) * 
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FIGURE CAPTIONS 

Fig. 1. Coupling integral I ( D )  for the principal resonances (s = 0; 1): 

a) asymptotic expression (dashed line) and numerical results for I ( D )  (solid line); 

b) function I ( D ) / D  used in Eqs. (104), (105), and (108). 
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