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Abstract
We examine correlations in a time series of electric

power system bIackout sizes using scaled window
variance analysis and R/S statistics. The data shows
some evidence of long time correlations and has Hurst
exponent near 0.7. Large blackouts tend to correlate with

further large blackouts afler a long time interval. Similar
effects are also observed in many other complex systems
exhibiting self-organized criticality. We discuss this
initial evidence and possible explanations for self-
organized criticali~ in power systems blackouts. Self-
organized criticality, I~fuh’y confirmed in power systems,
would suggest new approaches to understanding and
possibly controlling blackouts.

1. Introduction

Electric power transmission networks are complex
systems that are commonly run near their operational
limits. Such systems can undergo non-periodic major
cascading disruptions that have - serious- consequences.
Individually, these dkuptions or blackouts can be
attributed to specific causes, such as lightning strikes, ice
storms, equipment failure, shorts through untrimmed
trees, excessive customer demand, or unusual operating
conditions. However, an exclusive focus on these
individual causes can overlook the global dynamics of a
complex system in which repeated major disruptions from
a wide variety of sources are a virtual certainty. Indeed,
large scale disruptions can be intrinsic to the global
system dynamics as is observed in systems displaying
Self-Organized Criticality (SOC) [1]. A SOC system is
one in ‘which the nonlfiear dynamics in the presence of
perturbations organize the overall average system state
near to, but not at, the state that is marginal to major
disruptions. SOC systems are characterized by a
spec&nn of spatial and temporal scales of the disruptions
that exist in remarkably similar forms in a wide varie~ of
physical systems. In these systems, the probability cf
occurrence of large disruptive events decreases as a power
function of the event size. This is in contrast to Gaussian
systems in which the probability decays exponentially
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with event size. Therefore, the application of traditional
risk evaluation methods to SOC systems is bound to
underestimate the risk of large events.

It is difficult to directly determine whether a system
has SOC type dynamics. However, we can explore the
existence of correlations of events over long time scales to
indicate whether the system has non-trivial complex
dynamics with non-Gaussian properties. We also consider
the probability distribution function of disturbance sizes.

2. Detecting long time correlations in time
series

A time series is said to have long-range dependence if
its autocorrelation fhnction falls off asymptotically as a
power law, This Iype of dependence is dif%cult to
determine because the noise tends to dominate over the
signal for long time lags. Over the last decade, several
techniques have been developed to overcome this
problem. One such technique, and chronologically the
fwst one, is the resealed range statistics (RIS statistics)
proposed by Mandelbrot and Wallis [3] and based on a
previous hydrological analysis by Hurst [4]; another is the
scaled window variance technique [2].

The RIS statistics or the scaled window variance
technique considers blocks of m successive points in the
integrated time series and measure how fast the range or
standard deviation of the blocks grows as m increases. In
the case of the scaled window variance technique, we
begin by considering a time series

X={ Xl:t=l,2,..., n]. We then construct the

associated series of the Brownian motion,

Ys {~:t = 1,2,..., n}; that is, the original series

integrated in time: y+xt. For the Brownian
o

motion series Y and for each m = 1, 2, . .. . n, a new

{
series Y(”*)= Y(n): u = 1,2—

u >.. . n/m] is generated.

The elements of this series are blocks of m elements of


