skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: National Security Science and Technology Initiative: Air Cargo Screening

Technical Report ·
DOI:https://doi.org/10.2172/993460· OSTI ID:993460
 [1];  [2];  [3];  [4];  [5]
  1. ORNL
  2. Pacific Northwest National Laboratory (PNNL)
  3. Idaho National Laboratory (INL)
  4. Brookhaven National Laboratory (BNL)
  5. Battelle

The non-intrusive inspection (NII) of consolidated air cargo carried on commercial passenger aircraft continues to be a technically challenging, high-priority requirement of the Department of Homeland Security's Science and Technology Directorate (DHS S&T), the Transportation Security Agency and the Federal Aviation Administration. The goal of deploying a screening system that can reliably and cost-effectively detect explosive threats in consolidated cargo without adversely affecting the flow of commerce will require significant technical advances that will take years to develop. To address this critical National Security need, the Battelle Memorial Institute (Battelle), under a Cooperative Research and Development Agreement (CRADA) with four of its associated US Department of Energy (DOE) National Laboratories (Oak Ridge, Pacific Northwest, Idaho, and Brookhaven), conducted a research and development initiative focused on identifying, evaluating, and integrating technologies for screening consolidated air cargo for the presence of explosive threats. Battelle invested $8.5M of internal research and development funds during fiscal years 2007 through 2009. The primary results of this effort are described in this document and can be summarized as follows: (1) Completed a gap analysis that identified threat signatures and observables, candidate technologies for detection, their current state of development, and provided recommendations for improvements to meet air cargo screening requirements. (2) Defined a Commodity/Threat/Detection matrix that focuses modeling and experimental efforts, identifies technology gaps and game-changing opportunities, and provides a means of summarizing current and emerging capabilities. (3) Defined key properties (e.g., elemental composition, average density, effective atomic weight) for basic commodity and explosive benchmarks, developed virtual models of the physical distributions (pallets) of three commodity types and three explosive benchmarks combinations, and conducted modeling and simulation studies to begin populating the matrix of commodities, threats, and detection technologies. (4) Designed and fabricated basic (homogeneous) commodity test pallets and fabricated inert stimulants to support experiments and to validate modeling/simulation results. (5) Developed/expanded the team's capabilities to conduct full-scale imaging (neutron and x-ray) experiments of air cargo commodities and explosive benchmarks. (6) Conducted experiments to improve the collection of trace particles of explosives from a variety of surfaces representative of air cargo materials by means of mechanical (air/vibration/pressure), thermal, and electrostatic methods. Air cargo screening is a difficult challenge that will require significant investment in both research and development to find a suitable solution to ensure the safety of passengers without significantly hindering the flow of commodities. The initiative funded by Battelle has positioned this group to make major contributions in meeting the air cargo challenge by developing collaborations, developing laboratory test systems, improving knowledge of the challenges (both technical and business) for air cargo screening, and increasing the understanding of the capabilities for current inspection methods (x-ray radiography, x-ray backscatter, etc.) and potential future inspection methods (neutron radiography, fusion of detector modalities, advanced trace detection, etc.). Lastly, air cargo screening is still an issue that will benefit from collaboration between Department of Energy Laboratories and Battelle. On January 7, 2010, DHS Secretary Napolitano joined White House Press Secretary Robert Gibbs and Assistant to the President for Counterterrorism and Homeland Security John Brennan to announce several recommendations DHS has made to the President for improving the technology and procedures used to protect air travel from acts of terrorism. (This announcement followed the 25 Dec'09 Delta/Northwest Airlines Flight 253 terror attack.) Secretary Napolitano outlined five recommendations DHS will pursue to enhance the safety of the traveling public. One of the five recommendations, read as follows: 'Establish a partnership on aviation security between DHS and the Department of Energy and its National Laboratories in order to develop new and more effective technologies to deter and disrupt known threats and proactively anticipate and protect against new ways by which terrorists could seek to board an aircraft.' In conclusion, it appears very timely that Battelle and its DOE lab partners initiated a serious collaboration on the air cargo topic, and that we should continue to work toward future collaboration in response to the government's needs.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
Work for Others (WFO)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
993460
Report Number(s):
ORNL/TM-2010/298; 650103000; TRN: US201024%%51
Country of Publication:
United States
Language:
English