skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characterization of the influence of 1-butyl-3-methylimidazolium chloride on the structure and thermal stability of green fluorescent protein

Journal Article · · Journal of Physical Chemistry B
DOI:https://doi.org/10.1021/jp105611b· OSTI ID:991674

Ionic liquids (ILs) are finding a vast array of applications as novel solvents for a wide variety of processes that include enzymatic chemistry, particularly as more biocompatible ILs are designed and discovered. While it is assumed that a native or near-native structure is required for enzymatic activity, there is some evidence that ILs alter protein structure and oligomerization states in a manner than can negatively impact function. The IL 1-butyl-3-methylimidazolium chloride, [bmim]Cl, is a well-studied, water-miscible member of the popular 1-alkyl-3-methylimidazolium IL family. To improve our understanding of the impact of water-miscible ILs on proteins, we have characterized the structure and oligomerization state of green fluorescent protein (GFP) in aqueous solutions containing 25 and 50 vol % [bmim]Cl using a combination of optical spectroscopy and small-angle neutron scattering (SANS). Measurements were also performed as a function of temperature to provide insight into the effect of the IL on the thermal stability of GFP. While GFP exists as a dimer in water, the presence of 25 vol % [bmim]Cl causes GFP to transition to a monomeric state. The SANS data indicate that GFP is a great deal less compact in 50 vol % [bmim]Cl than in neat water, indicative of unfolding from the native structure. The oligomerization state of the protein in IL-containing aqueous solution changes from a dimer to a monomer in response to the IL, but does not change as a function of temperature in the IL-containing solution. The SANS and spectroscopic results also demonstrate that the addition of [bmim]Cl to the solution decreases the thermal stability of GFP, allowing the protein to unfold at lower temperatures than in aqueous solution.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Structural Molecular Biology (CSMB)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
991674
Journal Information:
Journal of Physical Chemistry B, Vol. 114, Issue 43; ISSN 1520-6106
Country of Publication:
United States
Language:
English