skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CHARACTERIZATION OF DEFECTS IN ALLOY 152, 52 AND 52M WELDS

Conference ·
OSTI ID:986712

Defect distributions have been documented by optical metallography, scanning electron microscopy and electron backscatter diffraction in alloy 152 and 52 mockups welds, alloy 52 and 52M overlay mockups and an alloy 52M inlay. Primary defects were small cracks at grain boundaries except for more extensive cracking in the dilution zone of an alloy 52 overlay on 304SS. Detailed characterizations of the dilution zone cracks were performed by analytical transmission electron microscopy identifying grain boundary titanium-nitride precipitation associated with the intergranular separations. I. INTRODUCTION Weldments continue to be a primary location of stress-corrosion cracking (SCC) in light-water reactor systems. While problems related to heat-affected-zone (HAZ) sensitization and intergranular (IG) SCC of austenitic stainless alloys in boiling-water reactors (BWRs) have been significantly reduced, SCC has now been observed in HAZs of non-sensitized materials and in dissimilar metal welds where Ni-base alloy weld metals are used. IGSCC in weld metals has been observed in both BWRs and pressurized water reactors (PWRs) with recent examples for PWR pressure vessel penetrations producing the most concern. This has led to the replacement of alloy 600/182/82 welds with higher Cr, more corrosion-resistant replacement materials (alloy 690/152/52/52M). Complicating this issue has been a known susceptibility to cracking during welding [1-7] of these weld metals. There is a critical need for an improved understanding of the weld metal metallurgy and defect formation in Ni-base alloy welds to effectively assess long-term performance. A series of macroscopic to microscopic examinations were performed on available mockup welds made with alloy 52 or alloy 152 plus selected overlay and inlay mockups. The intent was to expand our understanding of weld metal structures in simulated LWR service components with a focus on as-welded defects. Microstructural features, defect distributions, defect characteristics and weld residual strains were examined by optical metallography, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Industry-supplied mock-up welds were characterized including alloy 52 and 152 weldments, alloy 52M overlay and inlay welds, and an alloy 52 overlay. II. WELDMENTS II.A. Alloy 52 and 152 Weld Mockups The alloy 52 and 152 weld mockups were fabricated by MHI for the Kewaunee reactor and were obtained from the EPRI NDE Center. The mockups were U-groove welds joining two plates of 304SS as shown in Figure 1. Alloy 152 butter (heat 307380) was placed on the U-groove surface for both mockups by shielded metal arc welding (SMAW). For the alloy 152 weld mockup, the alloy 152 fill (heat 307380) was also applied using SMAW while for the alloy 52 weld mockup, the alloy 52 fill (heat NX2686JK) was applied using gas tungsten arc welding (GTAW). Welding parameters for the fill materials were substantially different with the alloy 152 SMAW having a deposition speed of 4-25 cm/min with a current of 95-145 A and the alloy 52 GTAW having a deposition speed of 4-10 cm/min with a current of 150-300 A. One prominent feature in these mockup welds is the presence of a crack starting at the 304SS butt joint at the bottom of the U-groove and extending up into the weld. It appears that the 304SS plate on either side of the butt joint acted as an anchor for the weld resulting in a stress rise across the slit that drove crack formation and extension up into the fill weld. As will be shown in the next section, the extent of the cracking around this stress riser was much greater in the MHI 52 weld mockup.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
986712
Report Number(s):
PNNL-SA-67526; 401001060; TRN: US1006423
Resource Relation:
Conference: 14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems, August 23-27, 2009, Virginia Beach, Virginia, 319-332
Country of Publication:
United States
Language:
English