skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Overview of the Cumulus Humilis Aerosol Processing Study.

Journal Article · · Bull. Am. Meteorol. Soc.

Aerosols influence climate directly by scattering and absorbing radiation and indirectly through their influence on cloud microphysical and dynamical properties. The Intergovernmental Panel on Climate Change (IPCC) concluded that the global radiative forcing due to aerosols is large and in general cools the planet. But the uncertainties in these estimates are also large due to our poor understanding of many of the important processes related to aerosols and clouds. To address this uncertainty an integrated strategy for addressing issues related to aerosols and aerosol processes was proposed. Using this conceptual framework, the Cumulus Humilis Aerosol Processing Study (CHAPS) is a stage 1 activity, that is, a detailed process study. The specific focus of CHAPS was to provide concurrent observations of the chemical composition of the activated [particles that are currently serving as cloud condensation nuclei (CCN)] and nonactivated aerosols, the scattering and extinction profiles, and detailed aerosol and droplet size spectra in the vicinity of Oklahoma City, Oklahoma, during June 2007. Numerous campaigns have examined aerosol properties downwind from large pollution sources, including the Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign and the two of the three Aerosol Characterization Experiments, ACE-2 and ACE-Asia. Other studies conducted near cities have examined changes in both aerosols and clouds downwind of urban areas. For example wintertime stratiform clouds associated with the urban plumes of Denver, Colorado, and Kansas City, Missouri, have a larger number concentration and smaller median volume diameter of droplets than clouds that had not been affected by the urban plume. Likewise, a decrease in precipitation in polluted regions along the Front Range of the Rocky Mountains was discovered. In a modeling study, it was found that precipitation downwind of urban areas may be influenced by changes in aerosols as well as the convergence pattern caused by the city. Recently, the New England Air Quality Study (NEAQS), and the 2004 International Consortium for Atmospheric Research on Transport and Transformation, which were conducted during the summer of 2004, examined the transport of pollutants and aerosols eastward from New England over the Atlantic Ocean. The Texas Air Quality Study/Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS/GoMACCS) also looked at relationships between clouds and aerosols in polluted conditions around Houston, Texas. In contrast to these recent studies near large or very dirty cities, CHAPS was conducted near a moderately sized city that is representative of a large number of cities around the United States. CHAPS was also one of the first times that a Aerodyne aerosol mass spectrometer was used in conjunction with a counterflow virtual impactor (CVI) inlet on an aircraft. The AMS provides information on the nonrefractory (i.e., materials that are chemically and physically unstable at high temperatures) composition of aerosols, while the CVI uses a counterflow relative to the main incoming airstream to exclude small droplets and nonactivated particles from the inlet, allowing only larger cloud droplets to enter the inlet. The combination of the CVI and AMS allow the examination of the chemical composition of the dried aerosol kernel from the cloud droplets. A key objective of the U.S. Department of Energy's (DOE)'s Atmospheric Sciences Program (ASP) is to improve the understanding of aerosol radiative effects on climate. This objective encompasses not only clear sky observations but also studies relating the effects of both aerosols on clouds and clouds on aerosols - in particular, how clouds affect the chemical and optical properties of aerosols. The latter was the science driver in the design of CHAPS. The measurement strategy for CHAPS was intended to provide measurements relevant to four questions associated with the aerosol radiative forcing issues of interest to the ASP: (1) How do the below-cloud and above-cloud aerosol optical and cloud nucleating properties downwind of a typical North American city differ from the optical and nucleating properties of aerosols in air unperturbed by urban emissions? Our interest is in the differences in the radiative properties, chemical composition, hygroscopic properties, and size distributions below and above cloud, and upwind and downwind of such a city. (2) How does the distribution of aerosol extinction vary in relation to the proximity to individual clouds and fields of clouds and why? (3) What are the differences, in terms of both size distributions and chemical composition, between activated aerosols within the urban plume and those outside the urban plume? (4) To what extent can models with state-of-the-art cloud parameterizations capture the statistical features of the below-above-cloud aerosols?

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE Office of Science (SC); National Aeronautics and Space Administration (NASA)
DOE Contract Number:
DE-AC02-06CH11357
OSTI ID:
973028
Report Number(s):
ANL/EVS/JA-63628; BAMIAT; TRN: US201005%%516
Journal Information:
Bull. Am. Meteorol. Soc., Vol. 90, Issue 11 ; Nov. 2009; ISSN 0003-0007
Country of Publication:
United States
Language:
ENGLISH