skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: QUALIFICATION OF THE SECOND ICS-3000 ION CHROMATOGRAPH FOR USE AT THE DEFENSE WASTE PROCESSING FACILITY

Technical Report ·
DOI:https://doi.org/10.2172/970621· OSTI ID:970621

The ICS-3000 Ion Chromatography (IC) system installed in 221-S M-14 has been qualified for use. The qualification testing was a head to head comparison of the second ICS-3000 with the initial ICS-3000 system that was installed in 221-S M-13. The crosscheck work included standards for instrument calibration and calibration verifications and standards for individual anion analysis, where the standards were traceable back to the National Institute of Standards and Technology (NIST). In addition the crosscheck work included the analysis of simulated Sludge Receipt and Adjustment Tank (SRAT) Receipt, SRAT Product, and Slurry Mix Evaporator (SME) samples, along with radioactive Sludge Batch 5 material from the SRAT and SME tanks. The Defense Waste Processing Facility (DWPF) requires the analysis of specific anions at various stages of its processing of high level waste (HLW). The anions of interest to the DWPF are fluoride, formate, chloride, nitrite, nitrate, sulfate, oxalate, and phosphate. The anion analysis is used to evaluate process chemistry including formic acid/nitric acid additions to establish optimum conditions for mercury stripping, reduction-oxidation (REDOX) chemistry for the melter, nitrite destruction, etc. The DWPF Laboratory (Lab) has recently replaced the Dionex DX-500 ion chromatography (IC) systems that had been used since 1998 by the first of two new ICS-3000 systems. The replacement effort was necessary due to the vendor of the DX-500 systems no longer supporting service contracts after 2008. DWPF purchased three new ICS-3000 systems in September of 2006. The ICS-3000 instruments are (a) designed to be more stable using an eluent generator to make eluent, (b) require virtually no daily chemical handling by the analysts, (c) require less line breaks in the hood, and (d) generally require less maintenance due to the pump configuration only using water versus the current system where the pump uses various hydroxide concentrations. The ICS-3000 instruments also allow the DWPF to maintain current service contracts, which support routine preventive maintenance and emergency support for larger problems such as component failure. One of the three new systems was set up in the DWPF Lab trailers in January of 2007 to be used for the development of methods and procedures. This system will continue to be used for training, new method development and potential improvements to current methods. The qualification of the other two ICS-3000 instruments was a phased effort. This effort was supported by the Applied Computational Engineering and Statistical (ACES) group of the Savannah River National Laboratory (SRNL) as authorized by the Technical Task Request (TTR) [1] and as directed by the corresponding Task Technical and Quality Assurance (TT&QA) plan [2]. The installation of the first 'rad' system into the M-13 Lab module required modifications to both the Lab module and to the radiohood. The installation was completed in July 2008. The testing of this system was conducted as directed by the TT&QA plan [2], and the instrument was qualified for use at the DWPF Lab as documented in [3]. As part of that evaluation, a recommendation was made that the second ICS-3000 be installed in the M-14 module and that qualification testing of that system be conducted. The purpose of this technical report is to provide a review of the data generated by these tests that will lead to the recommendation for the qualification of the M-14 ICS-3000 instrument.

Research Organization:
Savannah River Site (SRS), Aiken, SC (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
DE-AC09-08SR22470
OSTI ID:
970621
Report Number(s):
SRNL-STI-2009-00686; TRN: US1000924
Country of Publication:
United States
Language:
English