skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evaluation of Salmon Spawning below the Four Lowermost Columbia River Dams, 2004-2005 Annual Report.

Technical Report ·
DOI:https://doi.org/10.2172/962010· OSTI ID:962010
;  [1]
  1. Pacific Northwest National Laboratory

Since FY 2000, scientists at Pacific Northwest National Laboratory (PNNL) have conducted research to assess the extent of spawning by chum (Oncorhynchus keta) and fall Chinook (O. tshawytscha) salmon in the lower mainstem Columbia River. Their work supports a larger Bonneville Power Administration (BPA) project aimed at characterizing the physical habitat used by mainstem fall Chinook and chum salmon populations. Multiple collaborators in addition to PNNL are involved in the BPA project--counterparts include the Washington Department of Fish and Wildlife (WDFW), U.S. Fish and Wildlife Service (USFWS), Pacific States Marine Fisheries Commission (PSMFC), U.S. Geological Survey (USGS), and Oregon Department of Fish and Wildlife (ODFW). Data resulting from the individual tasks each agency conducts are providing a sound scientific basis for developing strategies to operate the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance the chum and fall Chinook salmon populations--both listed as threatened under the Endangered Species Act. Fall Chinook salmon, thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by biologists from the WDFW in 1993. Known spawning areas include gravel beds on the Washington side of the river near Hamilton Creek and Ives Island. Limited spawning ground surveys were conducted in the area around Ives and Pierce islands during 1994 through 1997. Based on these surveys, fall Chinook salmon were believed to be spawning successfully in this area. In addition, chum salmon have been documented spawning downstream of Bonneville Dam. In FY 1999, BPA Project No. 1999-003 was initiated by the WDFW, ODFW, and the USFWS to characterize the variables associated with physical habitat used by mainstem fall Chinook and chum salmon populations and to better understand the effects of hydropower project operations on spawning and incubation. Pacific Northwest National Laboratory was asked to join the study in FY 2000, during which its initial efforts were focused on (1) investigating the interactions between groundwater and surface water near fall Chinook and chum salmon spawning areas and (2) locating and mapping deepwater fall Chinook salmon spawning areas. In FY 2001, an additional task was added to provide support to the WDFW for analysis of juvenile salmon stranding data. The work PNNL has conducted since then continues to address these same three issues. The overall project is subdivided into a series of tasks, with each agency taking the lead on a task; WDFW leads the adult task, ODFW leads the juvenile task, and the USFWS leads the habitat task. All three tasks are designed to complement each other to achieve the overall project goal. Study results from PNNL's work contribute to all three tasks. This report documents the studies and tasks performed by PNNL during FY 2005. Chapter 1 provides a description of the deepwater redd searches conducted adjacent to Pierce and Ives islands and documents the search results and analysis of findings. Chapter 2 documents the collection of data on riverbed and river temperatures, from the onset of spawning to the end of emergence, and the provision of those data in-season to fisheries management agencies to assist with emergence timing estimates. Technical assistance provided to the WDFW in evaluation of stranding data is summarized in Chapter 3.

Research Organization:
Bonneville Power Administration (BPA), Portland, OR (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
652 REL 16
OSTI ID:
962010
Report Number(s):
DOE/BP-00000652-32; R&D Project: 1999-003-01; TRN: US200915%%386
Country of Publication:
United States
Language:
English