skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High Temperature Irradiation Effects in Selected Generation IV Structural Alloys

Journal Article · · Journal of Nuclear Materials

In the Generation IV Materials Program cross-cutting task, irradiation and testing were carried out to address the issue of high temperature irradiation effects with selected current and potential candidate metallic alloys. The materials tested were (1) a high-nickel iron-base alloy (Alloy 800H); (2) a nickel-base alloy (Alloy 617); (3) two advanced nano-structured ferritic alloys (designated 14YWT and 14WT); and (4) a commercial ferritic-martensitic steel (annealed 9Cr-1MoV). Small tensile specimens were irradiated in rabbit capsules in the High-Flux Isotope Reactor at temperatures from about 550 to 700 C and to irradiation doses in the range 1.2 to 1.6 dpa. The Alloy 800H and Alloy 617 exhibited significant hardening after irradiation at 580 C; some hardening occurred at 660 C as well, but the 800H showed extremely low tensile elongations when tested at 700 C. Notably, the grain boundary engineered 800H exhibited even greater hardening at 580 C and retained a high amount of ductility. Irradiation effects on the two nano-structured ferritic alloys and the annealed 9Cr-1MoV were relatively slight at this low dose.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR)
Sponsoring Organization:
Work for Others (WFO)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
958981
Journal Information:
Journal of Nuclear Materials, Vol. 392, Issue 2; ISSN 0022-3115
Country of Publication:
United States
Language:
English