skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Microbial Diversity and Bioremediation of aHydrocarbon-Contaminated Aquifer (Vega Baja, Puerto Rico)

Journal Article · · International Journal of Environmental Research and PublicHealth
OSTI ID:932592

Hydrocarbon contamination of groundwater resources hasbecome a major environmental and human health concern in many parts ofthe world. Our objectives were to employ both culture andculture-independent techniques to characterize the dynamics of microbialcommunity structure within a fluidized bed reactor used to bioremediate adiesel-contaminated groundwater in a tropical environment. Under normaloperating conditions, 97 to 99 percent of total hydrocarbons were removedwith only 14 min hydraulic retention time. Over 25 different cultureswere isolated from the treatment unit (96 percent which utilized dieselconstituents as sole carbon source). Approximately 20 percent of theisolates were also capable of complete denitrification to nitrogen gas.Sequence analysis of 16S rDNA demonstrated ample diversity with mostbelonging to the infinity, beta and gamma subdivision of theProteobacteria, Bacilli, and Actinobacteria groups. Moreover, the geneticconstitution of the microbial community was examined at multiple timepoints with a Functional Gene Array (FGA) containing over 12,000 probesfor genes involved in organic degradation and major biogeochemicalcycles. Total community DNA was extracted and amplified using anisothermal phi29 polymerase-based technique, labeled with Cy5 dye, andhybridized to the arrays in 50 percent formimide overnight at 50 degreesC. Cluster analysis revealed comparable profiles over the course oftreatment suggesting the early selection of a very stable microbialcommunity. A total of 270 genes for organic contaminant degradation(including naphthalene, toluene [aerobic and anaerobic], octane,biphenyl, pyrene, xylene, phenanthrene, and benzene); and 333 genesinvolved in metabolic activities (nitrite and nitrous oxide reductases[nirS, nirK, and nosZ], dissimilatory sulfite reductases [dsrAB],potential metal reducing C-type cytochromes, and methane monooxygenase[pmoA]) were repeatedly detected. Genes for degradation of MTBE,nitroaromatics and chlorinated compounds werealso present, indicating abroad catabolic potential of the treatment unit. FGA's demonstrated theearly establishment of a diverse community with concurrent aerobic andanaerobic processes contributing to the bioremediationprocess.

Research Organization:
COLLABORATION - ORNL
DOE Contract Number:
DE-AC02-05CH11231
OSTI ID:
932592
Report Number(s):
LBNL-63739; R&D Project: VGTLTH; TRN: US200813%%139
Journal Information:
International Journal of Environmental Research and PublicHealth, Vol. 3, Issue 3; Related Information: Journal Publication Date: 09/30/2006
Country of Publication:
United States
Language:
English