skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Z-STEM of L1o Ordering in FePt Magnetic Nanoparticles

Conference ·
OSTI ID:931754

The L1{sub o} (CuAuI) ordered FePt structure exhibits exceptional magnetic properties with uniaxial-magnetocrystalline anisotropy (K{sub u}) greater than 10{sup 6} ergs/cm3. Chemical synthesis methods can produce monodispersed FePt nanoparticles that have diameters ranging from 3 to 10 nm with a standard deviation of less than 5%. As-synthesized, the FePt nanoparticles are face-centered cubic (FCC) and require annealing at temperatures greater than 550 C for chemical ordering into the L1{sub o} structure. X-ray diffraction (XRD) methods typically characterize the ordering phase transformation by measuring the superlattice peaks. However, since the FePt nanoparticles coarsen during annealing, the larger particles may dominate the XRD data while the smallest particles correspondingly may contribute little to the diffracted intensity. Since recent data suggest that the FePt L1{sub o} ordering transformation is particle-size dependent, the current study employs high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM), also known as atomic-number contrast or Z-STEM, methods to investigate the presence of L1{sub o} order in individual FePt nanoparticles.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Shared Research Equipment Collaborative Research Center
Sponsoring Organization:
USDOE Office of Science (SC); Work for Others (WFO)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
931754
Resource Relation:
Conference: Microscopy and Microanalysis 2007, Fort Lauderdale, FL, USA, 20070805, 20070809
Country of Publication:
United States
Language:
English