skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation of the Rigid Amorphous Fraction in Nylon-6

Journal Article · · Journal of Thermal Analysis and Calorimetry

A three-phase model, comprising crystalline, mobile amorphous, and rigid amorphous fractions (X{sub c}, X{sub MA}, X{sub rA}, respectively) has been applied in the study of semicrystalline Nylon-6. The samples studied were Nylon-6 alpha phase prepared by subsequent annealing of a parent sample slowly cooled from the melt. The treated samples were annealed at 110 C, then briefly heated to 136 C, then re-annealed at 110 C. Temperature-modulated differential scanning calorimetry (TMDSC) measurements allow the devitrification of the rigid amorphous fraction to be examined. We observe a lower endotherm, termed the 'annealing' peak in the non-reversing heat flow after annealing at 110 C. By brief heating above this lower endotherm and immediately quenching in LN{sub 2}-cooled glass beads, the glass transition temperature and X{sub RA} decrease substantially, X{sub MA} increases, and the annealing peak disappears. The annealing peak corresponds to the point at which partial de-vitrification of the rigid amorphous fraction (RAF) occurs. Re-annealing at 110 C causes the glass transition and X{sub RA} to increase, and X{sub MA} to decrease. None of these treatments affected the measured degree of crystallinity, but it cannot be excluded that crystal reorganization or recrystallization may also occur at the annealing peak, contributing to the de-vitrification of the rigid amorphous fraction. Using a combined approach of thermal analysis with wide and small angle X-ray scattering, we analyze the location of the rigid amorphous and mobile amorphous fractions within the context of the Heterogeneous and Homogeneous Stack Models. Results show the homogeneous stack model is the correct one for Nylon-6. The cooperativity length ({var_epsilon}{sub A}) increases with a decrease of rigid amorphous fraction, or, increase of the mobile amorphous fraction. Devitrification of some of the RAF leads to the broadening of the glass transition region and shift of T{sub g}.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source
Sponsoring Organization:
Doe - Office Of Science
DOE Contract Number:
DE-AC02-98CH10886
OSTI ID:
929990
Report Number(s):
BNL-80599-2008-JA; TRN: US200822%%954
Journal Information:
Journal of Thermal Analysis and Calorimetry, Vol. 89, Issue 2; ISSN 1418-2874
Country of Publication:
United States
Language:
English