skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: JLab CW Cryomodules for 4th Generation Light Sources

Conference ·
OSTI ID:922273

Fourth generation light sources hold the prospect of unprecedented brightness and optical beam quality for a wide range of scientific applications. Many of the proposed new facilities will rely on large superconducting radio frequency (SRF) based linacs to provide high energy, low emittance CW electron beams. For high average power applications there is a growing acceptance of energy recovery linac (ERL) technology as the way to support large recirculating currents with modest RF power requirements. CW SRF and high current ERLs are two core competencies at Jefferson Lab. JLab has designed and built a number of CW cryomodules of several different types starting with the original CEBAF design, with variations for higher current in the two generations of JLab’s free-electron laser (FEL), through two intermediate prototypes to the final high-performance module for the 12 GeV upgrade. Each of these represent fully engineered and tested configurations with a variety of specifications that could be considered for possible use in fourth generation light sources. Furthermore JLab has been actively pursuing advanced concepts for highcurrent high-efficiency cryomodules for next generation ERL based FEL’s. These existing and proposed designs span the range from about 1mA single-pass to over 100 mA energy recovered current capability. Specialized configurations also exist for high-current non-energy recovered sections such as the injector region where very high RF power is required. We discuss the performance parameters of these existing and proposed designs and their suitability to different classes of fourth generation light sources.

Research Organization:
Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
AC05-06OR23177
OSTI ID:
922273
Report Number(s):
JLAB-ACC-07-767; DOE/OR/23177-0291; TRN: US0801117
Resource Relation:
Conference: 13th Workshop on RF Superconductivity, Beijing, China, Oct. 14 - 19, 2007
Country of Publication:
United States
Language:
English