skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Whole-genome transcriptional analysis of heavy metal stresses inCaulobacter crescentus

Journal Article · · Journal of Bacteriology

The bacterium Caulobacter crescentus and related stalkbacterial species are known for their distinctive ability to live in lownutrient environments, a characteristic of most heavy metal contaminatedsites. Caulobacter crescentus is a model organism for studying cell cycleregulation with well developed genetics. We have identified the pathwaysresponding to heavy metal toxicity in C. crescentus to provide insightsfor possible application of Caulobacter to environmental restoration. Weexposed C. crescentus cells to four heavy metals (chromium, cadmium,selenium and uranium) and analyzed genome wide transcriptional activitiespost exposure using a Affymetrix GeneChip microarray. C. crescentusshowed surprisingly high tolerance to uranium, a possible mechanism forwhich may be formation of extracellular calcium-uranium-phosphateprecipitates. The principal response to these metals was protectionagainst oxidative stress (up-regulation of manganese-dependent superoxidedismutase, sodA). Glutathione S-transferase, thioredoxin, glutaredoxinsand DNA repair enzymes responded most strongly to cadmium and chromate.The cadmium and chromium stress response also focused on reducing theintracellular metal concentration, with multiple efflux pumps employed toremove cadmium while a sulfate transporter was down-regulated to reducenon-specific uptake of chromium. Membrane proteins were also up-regulatedin response to most of the metals tested. A two-component signaltransduction system involved in the uranium response was identified.Several differentially regulated transcripts from regions previously notknown to encode proteins were identified, demonstrating the advantage ofevaluating the transcriptome using whole genome microarrays.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Director. Office of Science. Biological andEnvironmental Research
DOE Contract Number:
DE-AC02-05CH11231
OSTI ID:
918806
Report Number(s):
LBNL-59011; JOBAAY; R&D Project: G42601; BnR: KP1102010; TRN: US0805908
Journal Information:
Journal of Bacteriology, Vol. 187, Issue 24; Related Information: Journal Publication Date: December2005; ISSN 0021-9193
Country of Publication:
United States
Language:
English