skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hyperpolarized 129Xe Nuclear Magnetic Resonance Studies of Isoreticular Metal-Organic Frameworks

Journal Article · · Journal of Physical Chemistry, 11(16):6060 -6067
DOI:https://doi.org/10.1021/jp0668246· OSTI ID:912505

The pore environments of a series of isoreticular metal-organic frameworks (IRMOF) have been studied using hyperpolarized (HP) 129Xe nuclear magnetic resonance (NMR) spectroscopy. Xenon gas behaved as an efficient probe molecule for interrogating the variability of adsorption sites in functionalized IRMOF materials through variations in the NMR chemical shift of the adsorbed xenon. The xenon adsorption enthalpies extracted from variable temperature HP 129Xe NMR were found to be lower than published values for the physisorption of xenon. The low heats of adsorption were corroborated by xenon adsorption measurements that revealed two atoms per pore under one atmosphere of pressure at 19ºC. Average pore diameters estimated from the empirical chemical shift and pore size correlations based on a geometrical model were compared with x-ray crystallography data. The exchange processes of xenon in IRMOFs also were explored using 2D EXSY 129Xe NMR. It was found the exchange of xenon from adsorption sites within the IRMOF to the free gas space is much slower than that between the adsorption sites within the lattice. Cross-polarization experiments showed that the preferred adsorption sites were spatially removed from the phenylene rings of the network. This agrees with previous spectroscopic, structural and computational studies of gas adsorption (H2, N2, Ar) in IRMOFs that indicate the preferred binding sites reside near the carboxylate groups of the inorganic clusters.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
912505
Report Number(s):
PNNL-SA-51427; JPCHAX; KC0201050; TRN: US200801%%903
Journal Information:
Journal of Physical Chemistry, 11(16):6060 -6067, Vol. 11, Issue 16; ISSN 0022-3654
Country of Publication:
United States
Language:
English

Similar Records

Probing Porosity and Pore Interconnectivity in Crystalline Mesoporous TiO2 Using Hyperpolarized Xe-129 NMR
Journal Article · Thu Apr 23 00:00:00 EDT 2009 · Journal of Physical Chemistry C, 113(16):6577-6583 · OSTI ID:912505

A Xe-129 NMR Study of Functionalized Ordered Mesoporous Silica
Journal Article · Sat Dec 01 00:00:00 EST 2001 · Journal of Physical Chemistry B · OSTI ID:912505

Probing the Geometry and Interconnectivity of Pores in Organic Aerogels Using Hyperpolarized 129Xe NMR Spectroscopy
Journal Article · Wed Apr 28 00:00:00 EDT 2004 · Journal of the American Chemical Society, 126(16):5052-5053 · OSTI ID:912505