skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The abrasive wear of sintered titanium matrix-ceramic particle reinforced composites

Conference · · Wear

Particulate (TiC, TiB2 or Si3N4) reinforced Ti composites were produced by vacuum sintering (at 1400°C for 2 h). Ti+TiC composites could be sintered to high fractional densities (>93%), even at high TiC loadings (e.g., 40 volume percent (vol%)). No reactions were observed to occur between the Ti and TiC. By contrast, the Ti and TiB2 and Ti and Si3N4 reacted to form composites consisting of Ti, TiB and TiB2 and α-Ti(N), Ti5Si3, Ti3Si, and Ti2N, respectively. As a consequence, Ti was consumed and/or the reaction products intrinsically generated porosity during sintering. These composites were more difficult to consolidate via solid state sintering, particularly at higher volume fractions. Despite the porosity, the composites were more wear resistant (pin-on-drum abrasive wear against 100 μm garnet particles) than unreinforced Ti, with the exception of the Ti+2.5 vol% TiB2 and Ti+≤10 vol% TiC composites. The ranking of microhardness and abrasion wear resistance of the composites was as follows: (hardest, most wear resistant) Ti+Si3N4 (i.e., α-Ti(N), +Ti5Si3, Ti3Si, and Ti2N)Ti+TiB2Ti+TiC (softest, least wear resistant). The microhardness coupled with the apparent strength of the chemical interface that developed between the constituent composite phases was responsible for the observed wear behavior.

Research Organization:
Albany Research Center (ARC), Albany, OR (United States)
Sponsoring Organization:
USDOE - Office of Fossil Energy (FE)
OSTI ID:
900508
Report Number(s):
DOE/ARC-1999-014; TRN: US200711%%159
Journal Information:
Wear, Vol. 225-29, Issue 1; Conference: 12th International Conference on Wear of Materials, Atlanta, GA, Apr. 25-29, 1999; ISSN 0043-1648
Publisher:
Elsevier Science
Country of Publication:
United States
Language:
English

Similar Records

Abrasive wear behavior of P/M titanium metal-matrix composites
Conference · Wed Jan 01 00:00:00 EST 1997 · OSTI ID:900508

Influence of reinforcement volume fraction and size on the microstructure and abrasion wear resistance of hot isostatic pressed white iron matrix composites
Journal Article · Sun Dec 01 00:00:00 EST 1996 · Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science · OSTI ID:900508

Abrasion resistance of in situ Fe-TiC composites
Journal Article · Fri Sep 15 00:00:00 EDT 1995 · Scripta Metallurgica et Materialia · OSTI ID:900508