skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evaluating detonation possibilities in a Hanford radioactive waste tank

Journal Article · · Transactions of the American Nuclear Society
OSTI ID:89343

Since the early 1940s, radioactive wastes generated from the defense operations at the Hanford site have been stored in underground waste storage tanks. During the intervening years, the waste products in some of these tanks have transformed into a potentially hazardous mixture of gases and solids as a result of radiolytic and thermal chemical reactions. One tank in particular, tank 241-SY-101, has been periodically releasing high concentrations of a hydrogen/nitrous oxide/nitrogen/ammonia gas mixture into the tank dome vapor space. The purpose of this study is to determine the conditions under which a detonation of the flammable gas mixture may occur and damage the tank system. There are two ways that a detonation can occur during a release of waste gases into the dome vapor space: direct initiation of detonation by a powerful ignition source and deflagration to detonation transition (DDT). The first case involves a strong ignition source of high energy, high power, or of large size [{approximately}1 g of high explosive (4.6 kJ) for a stoichiometric hydrogen-air mixture] to directly initiate a detonation by {open_quotes}shock{close_quotes} initiation. This strong ignition is thought to be incredible for in-tank ignition sources. The second process involves igniting the released waste gases, which results in a subsonic flame (deflagration) propagating into the unburned combustible gas. The flame accelerates to velocities that cause compression waves to form in front of the deflagration combustion wave. Shock waves may form and the combustion process may be transformed to a detonation wave.

OSTI ID:
89343
Report Number(s):
CONF-941102-; ISSN 0003-018X; TRN: 95:004215-0420
Journal Information:
Transactions of the American Nuclear Society, Vol. 71; Conference: Winter meeting of the American Nuclear Society (ANS), Washington, DC (United States), 13-18 Nov 1994; Other Information: PBD: 1994
Country of Publication:
United States
Language:
English