skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MANAGING TIGHT BINDING RECEPTORS FOR NEW SPEARATIONS TECHNOLOGIES

Technical Report ·
DOI:https://doi.org/10.2172/835015· OSTI ID:835015

Much of the earth's pollution involves compounds of the metallic elements, including actinides, strontium, cesium, technetium, and RCRA metals. Metal ions bind to molecules called ligands, which are the molecular tools that can manipulate the metal ions under most conditions. This DOE-EMSP sponsored program strives (1) to provide the foundations for using the most powerful ligands in transformational separations technologies and (2) to produce seminal examples of their applications to separations appropriate to the DOE EM mission. These ultra tight-binding ligands can capture metal ions in the most competitive of circumstances (from mineralized sites, lesser ligands, and even extremely dilute solutions), but they react so slowly that they are useless in traditional separations methodologies. Two attacks on this problem are underway. The first accommodates to the challenging molecular lethargy by developing a seminal slow separations methodology termed the soil poultice. The second designs ligands that are only tight-binding while wrapped around the targeted metal ion, but can be put in place by switch-binding and removed by switch-release. We envision a kind of molecular switching process to accelerate the union between metal ion and tight-binding ligand. Molecular switching processes are suggested for overcoming the slow natural equilibration rate with which ultra tight-binding ligands combine with metal ions. Ligands that bind relatively weakly combine with metal ions rapidly, so the trick is to convert a ligand from a weak, rapidly binding species to a powerful, slow releasing ligand--during the binding of the ligand to the metal ion. Such switch-binding ligands must react with themselves, and the reaction must take place under the influence of the metal ion. For example, our generation 1 ligands showed that a well-designed linear ligand with ends that readily combine, forms a cyclic molecule when it wraps around a metal ion. Our generation 2 ligands are even more interesting. They convert from rings to structures that wrap around a metal ion to form a cage. These ligands are called cryptands. Switch release is accomplished by photolytic cleavage of a bond to convert a cyclic ligand into a linear ligand or to break similar bonds in a cryptate. Our studies have demonstrated switch binding and switch release with cryptates of calcium. These remarkable cyclic ligands and cage-like ligands are indeed tight-binding and may, in principle, be incorporated in various separations methodologies, including the soil poultice. The soil poultice mimics the way in which microbes secrete extremely powerful ligands into the soil in order to harvest iron. The cellular membrane of the microbe recognizes the iron/ligand complex and admits it into the cell. The soil poultice uses molecularly imprinted polymers (MIPs) to play the role of the cellular membrane. Imprinting involves creation of the polymer in the presence of the metal/ligand complex. In principle, a well design ligand/MIP combination can be highly selective toward almost any targeted metal ion. The principles for that design are the focus of these investigations. An imprinting molecule can interact with the polymer through any, some, or all of the so-called supramolecular modes; e.g., hydrogen bonding, electrostatic charge, minor ligand bonding, Pi-Pi stacking, and hydrophobic and van der Waals interactions. Historically these modes of binding have given MIPs only small re-binding capacities and very limited selectivities. This program has shown that each mode of interaction can be made more powerful than previously suspected and that combinations of different supramolecular interaction modes can produce remarkable synergisms. The results of this systematic study provide a firm foundation for tailoring molecular imprinted polymers for reclamation of specific metal ion, including those important to the DOE EM mission.

Research Organization:
UNIVERSITY OF KANSAS (US)
Sponsoring Organization:
(US)
DOE Contract Number:
FG07-96ER14708
OSTI ID:
835015
Report Number(s):
FINAL REPORT; EMSP 73831; TRN: US200503%%520
Resource Relation:
Other Information: PBD: 10 Dec 2004
Country of Publication:
United States
Language:
English