skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Irreversible gettering of thionyl chloride

Technical Report ·
DOI:https://doi.org/10.2172/751011· OSTI ID:751011

The authors have successfully demonstrated the irreversible gettering of SOCl{sub 2} by ZnO/ASZMTEDA carbon over a modest temperature range. While thionyl chloride decomposition was slow below {minus}20 C, lower temperatures are expected to be less of a problem than at higher temperatures. The approximately 30 cc of thionyl chloride in a typical D-cell would require 50 g of ZnO and 107 g of ASZMTEDA carbon. Fortunately, since it is unlikely to happen at all, it is common practice to assume only one cell will fail (leak) in a given battery pack. So, one charge of getter can protect the whole battery pack. In summary, ZnO/ASZMTEDA carbon fulfills all of the requirements of an ideal getter including: irreversible binding or reaction with SOCl{sub 2}, high volumetric uptake capacity, high efficiency, non-volatile, air stable, insensitive to poisoning, non-toxic, cheap, non-corrosive, and the gettering product is not a liquid or oil that could block further flow or accessibility. Future work in this area includes incorporation of the ZnO and carbon into a structural open-celled porous monolith, as well as, gettering for other types of batteries (e.g., Li/MnO{sub 2}).

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
751011
Report Number(s):
SAND98-8252; TRN: AH200019%%8
Resource Relation:
Other Information: PBD: 1 Nov 1999
Country of Publication:
United States
Language:
English