skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comparisons of finite-element code calculations to hydrostatically loaded subassembly-duct experiments

Technical Report ·
DOI:https://doi.org/10.2172/7213744· OSTI ID:7213744

The Liquid Metal Fast Breeder Reactor (LMFBR) core structure consists of a matrix of hexagonal subassembly ducts. Evaluation of the safety aspects of the core structure requires that reliable computational procedures be available to predict the deformation response of the subassembly configuration to postulated local energy releases. Finite-element computer codes have been developed to calculate deflections and strains of a hexcan subassembly wrapper subjected to internal and external dynamic pressure loadings over a wide range of material-property conditions. An experimental and analytical program has been undertaken to validate and extend the codes for describing the core structural mechanics under reactor operating conditions, including, in particular, descriptions of possible subassembly-to-subassembly damage propagation. This report describes results of the first phase of the experimental program in which single hexcan sections were internally and externally hydrostatically pressurized out-of-pile at room temperature. The experimental data are compared with calculations from a two-dimensional finite-element structural-dynamics code, STRAW. Some additional comparisons were also made with calculations from a three-dimensional code, SADCAT. The correlations obtained between the computations and the hydrostatic experimental results were sufficiently good to validate the STRAW code and proceed to the next phase of the program involving the dynamic structural response.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
US Energy Research and Development Administration (ERDA)
DOE Contract Number:
W-31-109-ENG-38
OSTI ID:
7213744
Report Number(s):
ANL-77-1
Country of Publication:
United States
Language:
English