skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Incineration of biological sludge in a fluidized bed

Thesis/Dissertation ·
OSTI ID:7078988

Incineration rate, ash properties, and percentage destruction of the combustible material were evaluated under different operating conditions. Experimental measurements were made for temperature, air flow rate, sludge size, ash size and sludge composition. A model based on the heat transfer consideration was derived to describe the drying and devolatilization process during sludge incineration. The model assumes that the drying and devolatilization of a sludge particle is manly caused by the heat flowing into the sludge particle from the bed. Parameters affecting the simulation results included sludge size, inert particle size, sludge heat capacity, sludge heat conductivity, operating flow rate and incinerator temperature. A model developed to simulate a batch type air-sand fluidized bed considered the incineration process as being composed of three consecutive operations, namely, drying, devolatilization, and char combustion. The simulation model predicted the dynamic characteristics of sludge incineration in the bed including its percentage completion and the incinerator temperature. The effects of sludge moisture level, sludge size and incinerator operating conditions on the incinerator behavior were also evaluated. The model developed to simulate the behavior of a fluidized bed incinerator under continuous operation was capable of predicting the time to reach steady state, the stack gas composition, the percentage combustion and the auxiliary heat required under various operating conditions, including sludge feed rate and size, air feed rate, and incinerator temperature.

Research Organization:
Lamar Univ., Beaumont, TX (USA)
OSTI ID:
7078988
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English