skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Formation of mixed oxide powders in flames: Part II. SiO sub 2 --GeO sub 2 and Al sub 2 O sub 3 --TiO sub 2

Journal Article · · Journal of Materials Research; (United States)
; ;  [1]
  1. Department of Chemical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218 (United States)

SiO{sub 2}--GeO{sub 2} and Al{sub 2}O{sub 3}--TiO{sub 2} mixed oxide powders were synthesized using a counterflow diffusion flame burner. SiCl{sub 4}, GeCl{sub 4}, Al(CH{sub 3}){sub 3}, and TiCl{sub 4} were used as source materials for the formation of oxide particles in hydrogen-oxygen flames. {ital In} {ital situ} particle sizes were determined using dynamic light-scattering. Powders were collected using two different methods, a thermophoretic method (particles are collected onto carbon coated TEM grids) and an electrophoretic method (particles are collected onto stainless steel strips). Their size, morphology, and crystalline form were examined using a transmission electron microscope and an x-ray diffractometer. A photomultiplier at 90{degree} to the argon ion laser beam was used to measure the light-scattering intensity. The formation of the mixed oxides was investigated using Si to Ge and Al to Ti ratios of 3:5 and 1:1, respectively. Heterogeneous nucleation of the SiO{sub 2} on the surface of the GeO{sub 2} was observed. In Al{sub 2}O{sub 3}--TiO{sub 2} mixtures, both oxide particles form at the same temperature. X-ray diffraction analysis of particles sampled at temperatures higher than 1553 K showed the presence of rutile, {gamma}--Al{sub 2}O{sub 3}, and aluminum titanate. Although the particle formation processes for SiO{sub 2}--GeO{sub 2} is very different from that for Al{sub 2}O{sub 3}--TiO{sub 2}, both mixed oxides result in very uniform mixtures.

DOE Contract Number:
FG02-88ER45356
OSTI ID:
7068555
Journal Information:
Journal of Materials Research; (United States), Vol. 7:7; ISSN 0884-2914
Country of Publication:
United States
Language:
English