skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Picosecond spectroscopic study of chlorophyll-based models for the primary photochemistry of photosynthesis. [Dimers and trimers of chlorophyllide derivatives]

Journal Article · · J. Phys. Chem.; (United States)
DOI:https://doi.org/10.1021/j100208a009· OSTI ID:6938081

A series of covalently linked dimers and trimers of chlorophyllide derivatives was investigated by time-resolved absorption and fluorescence spectroscopy (3 to 10/sup 4/ ps). For these compounds, the free energy difference between the singlet excited state of the electron donor and the anticipated cation-anion photoproduct (..delta..G/sub ET/) is estimated to range from +200 to -400 MeV. For the dimers studied, the singlet-excited-state lifetimes range from 1 to 7 ns and depend inversely on the solvent's static dielectric constant. Since no decrease in lifetime or fluorescence quantum yield was found as ..delta..G/sub ET/ became more negative, this effect is unlikely to be due to slow electron transfer. It may be a result of fluctuating intramolecular association of the nonpolar macrocycles in solvents with a high dielectric constant. We also studied two trimers, each having the same chlorophyllide a dimer as the electron donor, but with pyropheophorbide a or pheophorbide a as the electron acceptor (the latter is 90 MeV easier to reduce than the former). For the trimer with pheophorbide a as the acceptor, there is evidence for a new path of radiationless decay which may involve an electron-transfer product. However, the rate of formation of this product is slow (less than or equal to 10/sup 10/ s/sup -1/), and its yield is low (less than or equal to 50%). Taken together, these results suggest that chlorophyll-based, donor-acceptor pairs connected by flexible chains longer than five atoms are not likely to duplicate the highly efficient excited-singlet-state electron-transfer reactions characteristic of the primary photochemistry of photosynthetic organisms.

OSTI ID:
6938081
Journal Information:
J. Phys. Chem.; (United States), Vol. 86:11
Country of Publication:
United States
Language:
English