skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: ZTI: An ignition class reversed-field pinch

Conference ·
OSTI ID:6780447

A cost-optimized conceptual design of an intermediate-step, ignition-class RFP device (ZTI)for the study of alpha-particle physics and burn control in a DT plasma is reported. With major and minor plasma radii R{sub T} = 2.4m and {tau}{sub p} = 0.4m, respectively, and for conservative extrapolations of experimental energy-confinement times, ion-density profiles, and impurity levels, the ZTI operating conditions during a 5-s period of constant fusion power are: toroidal plasma current I{sub {phi}} {approx equal} 9 MA, plasma temperature T {approx equal} 11 keV, plasma density n{sub i} {approx equal} 3 {times} 10{sup 20} m{sup {minus}3}, fusion power P{sub F} {approx equal} 100 MW, and physics Q-value Q{sub p} {approx equal} 5 for a total machine size that corresponds to P{sub F}/M{sub FPC} {approx equal} 590 kW/tonne. This physics design point was adopted as a strawman'' with which to examine the requirements of ohmic heating to DT ignition and to perform a cost-optimized magnetics design. The ZTl design reflects potentially significant cost savings relative to similar ignition-class tokamaks for device parameters that reside on the path to a viable commercial RFP reactor. The methodology and results of coupling realistic physics, engineering, and cost models through a multi-dimensional optimizer are reported for this device that would follow the 2-4 MA ZTH presently under construction.

Research Organization:
Los Alamos National Lab., NM (USA)
Sponsoring Organization:
DOE/ER
DOE Contract Number:
W-7405-ENG-36
OSTI ID:
6780447
Report Number(s):
LA-UR-90-2938; CONF-900918-9; ON: DE91000447; TRN: 91-000089
Resource Relation:
Conference: 16. symposium on fusion technology, London (UK), 3-7 Sep 1990
Country of Publication:
United States
Language:
English