skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Steady-state thermal-hydraulic analysis of the pellet-bed reactor for nuclear thermal propulsion

Conference · · Transactions of the American Nuclear Society; (United States)
OSTI ID:6683589
; ;  [1]
  1. Institute for Space Nuclear Power Studies, Albuquerque, NM (United States)

The pellet-bed reactor (PBR) for nuclear thermal propulsion is a hydrogen-cooled, BeO-reflected, fast reactor, consisting of an annular core region filled with randomly packed, spherical fuel pellets. The fuel pellets in the PBR are self-supported, eliminating the need for internal core structure, which simplifies the core design and reduces the size and mass of the reactor. Each spherical fuel pellet is composed of hundreds of fuel microspheres embedded in a zirconium carbide (ZrC) matrix. Each fuel microsphere is composed of a UC-NbC fuel kernel surrounded by two consecutive layers of the NbC and ZrC. Gaseous hydrogen serves both as core coolant and as the propellant for the PBR rocket engine. The cold hydrogen flows axially down the inlet channel situated between the core and the external BeO reflector and radially through the orifices in the cold frit, the core, and the orifices in the hot frit. Finally, the hot hydrogen flows axially out the central channel and exits through converging-diverging nozzle. A thermal-hydraulic analysis of the PBR core was performed with an emphasis on optimizing the size and axial distribution of the orifices in the hot and cold frits to ensure that hot spots would not develop in the core during full-power operation. Also investigated was the validity of the assumptions of neglecting the axial conduction and axial cross flow in the core.

OSTI ID:
6683589
Report Number(s):
CONF-921102-; CODEN: TANSAO
Journal Information:
Transactions of the American Nuclear Society; (United States), Vol. 66; Conference: Joint American Nuclear Society (ANS)/European Nuclear Society (ENS) international meeting on fifty years of controlled nuclear chain reaction: past, present, and future, Chicago, IL (United States), 15-20 Nov 1992; ISSN 0003-018X
Country of Publication:
United States
Language:
English