skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Simultaneous absorption of carbon dioxide and hydrogen sulfide with carbonyl sulfide contamination in aqueous methyldiethanolamine

Miscellaneous ·
OSTI ID:6678981

The primary objectives of the research were to: (1) obtain experimental data for simultaneous gas absorption systems to help formulate and test theoretical models of multicomponent mass transfer, and (2) develop the theoretical models which predict mass transfer rates from chemical reaction kinetics, system hydrodynamics and boundary conditions. To fulfill these objectives two-phase contact devices were designed and constructed. These were, a solubility of equilibrium apparatus, a laminar liquid jet apparatus, and a wetted-sphere apparatus. These devices were used to measure fundamental physiochemical properties of gases in liquids. The properties measured were the solubilities and diffusivities of N{sub 2}O, CO{sub 2}, and COS in aqueous MDEA. The reaction rate constants of the reactions between CO{sub 2} and MDEA and between COS and MDEA were also measured. In addition to these devices, a stirred tank absorber was used to obtain experimental data on multicomponent simultaneous absorption. A computer program was developed to solve the two-point boundary value problems generated by film theory. This research involved modeling and analyzing gas absorption systems with the chemical reactions taken as irreversible in one case and reversible in another. A parametric study of the case of reversible reactions revealed that for certain ranges of the parameter space the model predicted forced desorption. The program was tested against experimental data from two simultaneous absorption experiments. These were the simultaneous absorption of CO{sub 2}, COS, and N{sub 2} into aqueous MDEA and the simultaneous absorption of CO{sub 2}, H{sub 2}S, COS and N{sub 2} into aqueous MDEA. The program predictions of gas absorption rates were within 13% of the experimental values for the former experiment and within 9% for the latter.

Research Organization:
California Univ., Santa Barbara, CA (USA)
OSTI ID:
6678981
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English