skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evolution of the residual stress state in a duplex stainless steel during loading

Journal Article · · Acta Materialia
; ;  [1]
  1. Linkoeping Univ. (Sweden). Div. of Engineering Materials

The evolution of micro- and macrostresses in a duplex stainless steel during loading has been investigated in situ by X-ray diffraction. A 1.5 mm cold-rolled sheet of alloy SAF 2304 solution treated at 1,050 C was studied. Owing to differences in the coefficient of thermal expansion between the two phases, compressive residual microstresses were found in the ferritic phase and balancing tensile microstresses in the austenitic phase. The initial microstresses were almost two times higher in the transverse direction compared to the rolling direction. During loading the microstresses increase in the macroscopic elastic regime but start to decrease slightly with increasing load in the macroscopic plastic regime. For instance, the microstresses along the rolling direction in the austenite increase from 60 MPa, at zero applied load, to 110 MPa, at an applied load of 530 MPa. At the applied load of 620 MPa a decrease of the microstress to 90 MPa was observed. During unloading from the plastic regime the microstresses increase by approximately 35 MPa in the direction of applied load but remain constant in the other directions. The initial stress state influences the stress evolution and even after 2.5% plastic strain the main contribution to the microstresses originates from the initial thermal stresses. Finite element simulations show stress variations within one phase and a strong influence of both the elastic and plastic anisotropy of the individual phases on the simulated stress state.

OSTI ID:
6448858
Journal Information:
Acta Materialia, Vol. 47:9; ISSN 1359-6454
Country of Publication:
United States
Language:
English