skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of nonionic surfactant on the degradation of glass-sorbed PCB congeners by integrated chemical-biological treatment

Journal Article · · Environmental Toxicology and Chemistry
;  [1]
  1. Inst. of Gas Tech., Des Plaines, IL (United States)

A study was conducted on the effect of a nonionic surfactant on the efficiency of the integrated chemical-biological treatment (ICBT) of polychlorinated biphenyls (PCBs) sorbed to the glass walls of the experimental vessels. The addition of surfactant associated with the chemical oxidation was proposed to overcome two limitations of biodegradation of hydrophobic compounds: adsorption to surfaces,a nd lack of solubility and thus availability to the microorganisms. Two {sup 14}C-labeled PCB congeners, 2-chlorobiphenyl and 2,2{prime},4,4{prime}-tetrachlorobiphenyl, were used as the test compounds. The integrated chemical-biological treatment consisted of sequential applications of Fenton`s reagent (5% H{sub 2}O{sub 2}, 1 mM FeSO{sub 4}) at pH 4.0 (with and without non-ionic surfactant Novel 2 1412-60) and the inoculation with a mixed culture of Pseudomonas sp., strain LB400, and Alcaligenes eutrophus, strain H850, at pH 8.0. The chemical treatment in the presence of surfactant affected the removal of the congeners bound to the glass surfaces of the experimental test systems. As indicated by high-pressure liquid chromatography analysis, these PCBs were converted to unidentified soluble products that are hypothesized to be partial oxidation products. No parent test compounds were detectable in the system after chemical treatment with or without surfactant. The addition of the mixed culture of PCB-degrading bacteria after completion of chemical treatment in the presence of surfactant resulted in the removal of approximately 45% of 2-chlorobiphenyl and 32% of 2,2{prime},4,4{prime}-tetrachlorobiphenyl in the form of {sup 14}CO{sub 2}. This compared to 29% and 23% without the addition of surfactant, respectively. The authors suggest that the combination of surfactant-induced desorption and chemical oxidation would increase the availability of hydrophobic pollutants for microbial degradation.

Sponsoring Organization:
USDOE
OSTI ID:
64479
Journal Information:
Environmental Toxicology and Chemistry, Vol. 14, Issue 5; Other Information: PBD: May 1995
Country of Publication:
United States
Language:
English

Similar Records

Metabolism of different PCB congeners in plant cell cultures
Journal Article · Fri Dec 01 00:00:00 EST 1995 · Environmental Toxicology and Chemistry · OSTI ID:64479

Evidence for novel mechanisms of polychlorinated biphenyl metabolism in Alcaligenes eutrophus H850
Journal Article · Fri May 01 00:00:00 EDT 1987 · Appl. Environ. Microbiol.; (United States) · OSTI ID:64479

Extensive degradation of aroclors and environmentally transformed polychlorinated biphenyls by Alcaligenes eutrophus H850
Journal Article · Fri May 01 00:00:00 EDT 1987 · Appl. Environ. Microbiol.; (United States) · OSTI ID:64479