skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Phase relations in the system Cu-Gd-O and Gibbs energy of formation of CuGd[sub 2]O[sub 4]

Journal Article · · Metallurgical Transactions, A (Physical Metallurgy and Materials Science); (United States)
DOI:https://doi.org/10.1007/BF02646604· OSTI ID:6301496
; ;  [1]
  1. Indian Inst. of Science, Bangalore (India). Dept. of Metallurgy

The phase relations in the system Cu-Gd-O have been determined at 1,273 K by X-ray diffraction, optical microscopy, and electron microprobe analysis of samples equilibrated in quartz ampules and in pure oxygen. Only one ternary compound, CuGd[sub 2]O[sub 4], was found to be stable. The Gibbs free energy of formation of this compound has been measured using the solid-state cell Pt, Cu[sub 2]O + CuGd[sub 2]O[sub 4] + Gd[sub 2]O[sub 3]//(Y[sub 2]O[sub 3])ZrO[sub 2]//CuO + Cu[sub 2]O, Pt in the temperature range of 900 to 1,350 K. For the formation of CuGd[sub 2]O[sub 4] from its binary component oxides, CuO (s) + Gd[sub 2]O[sub 3] (s) [r arrow] CuGd[sub 2]O[sub 4] (s) [Delta]G[degree] = 8230 - 11.2T([plus minus]50)J/mol. Since the formation is endothermic, CuGd[sub 2]O[sub 4] becomes thermodynamically unstable with respect to CuO and Gd[sub 2]O[sub 3] below 735 K. When the oxygen partial pressure over CuGd[sub 2]O[sub 4] is lowered, it decomposes according to the reaction 4CuGd[sub 2]O[sub 4] (s) [r arrow] 4Gd[sub 2]O[sub 3] (s) + 2Cu[sub 2]O (s) + O[sub 2] (g) for which the equilibrium oxygen potential is given by [Delta][mu][sub o][sub 2] = [minus]227,970 + 143.2T([plus minus]500)J/mol. An oxygen potential diagram for the system Cu-Gd-O at 1,273 is presented.

OSTI ID:
6301496
Journal Information:
Metallurgical Transactions, A (Physical Metallurgy and Materials Science); (United States), Vol. 24:7; ISSN 0360-2133
Country of Publication:
United States
Language:
English