skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Genetic basis of long-chain aliphatic hydrocarbon biosynthesis in bacteria. Final technical report, July 7, 1981-January 6, 1983

Technical Report ·
OSTI ID:6221940

A variety of Micrococcus species, some related Arthrobacter, and Pseudomonas maltophilia are among the few bacteria which produce significant quantities of long chain aliphatic hydrocarbons. It was the purpose of this investigation to initiate studies aimed at understanding the genetic basis of aliphatic hydrocarbon production. Results have shown that some strains of several of the Micrococcus species carry plasmids, but they appear not to be associated with hydrocarbon production. Clearly, plasmids are not required for hydrocarbon biosynthesis, as many plasmidless strains produce large quantities of hydrocarbons with normal species-specific profiles. This is the first report on the occurrence of plasmids in Micrococcus species such as M. roseus, M. varians, M. kristinae, M. agilis, M. nishinomiyaensis, and unnamed, nonhuman primate Micrococcus spp. It is also the first report on aliphatic hydrocarbon production in M. agilis and the above nonhuman primate species. Although hydrocarbon production is not specifically under plasmid control, micrococcal plasmids may be able to serve as vectors for cloned hydrocarbon biosynthesis genes and ultimately used in the genetic engineering of this important group of organisms. For this reason, we initiated studies on the nucleotide sequence relationships, restriction enzyme digestion, and marking of several of the more interesting plasmids. Results have indicated that within species some plasmids share considerable nucleotide sequence homology. It is recommended that future investigations on these organisms should focus on unraveling the hydrocarbon biosynthetic pathway(s), isolating and characterizing the various enzymes involved with hydrocarbon biosynthesis, isolating and cloning the various chromosomal genes controlling these enzymes, and exploring genetic transfer (exchange) systems. Expression of micrococcal hydrocarbon genes in other organisms should also be evaluated.

Research Organization:
North Carolina State Univ., Raleigh (USA). Dept. of Genetics
DOE Contract Number:
AS09-81ER10966
OSTI ID:
6221940
Report Number(s):
DOE/ER/10966-1; ON: DE83012799
Country of Publication:
United States
Language:
English