skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cuprous oxide--indium--tin oxide thin film photovoltaic cells

Journal Article · · J. Appl. Phys.; (United States)
DOI:https://doi.org/10.1063/1.332427· OSTI ID:6107492

We studied thin films of cuprous oxide deposited on glass coated with transparent conducting indium--tin oxide (ITO) films. The deposition of both Cu/sub 2/O and ITO was made by rf sputtering in an Ar/O/sub 2/ gas mixture. For the deposition of Cu/sub 2/O a pure copper target was used and ITO films were deposited from a disk target, the halves of which were made of Sn and In, respectively. This allows variation of the stoichiometry of the deposited ITO film by changing the position of the substrate glass beneath the Sn/In target. X-ray diffraction of Cu/sub 2/O films indicates the typical pattern of amorphous material. We were able to produce Cu/sub 2/O films of different stoichiometry by varying the O/sub 2/ to Ar ratio during rf sputtering. The maximum resistivity of the films corresponds to an ideal stoichiometry of Cu/sub 2/O. An activation energy of 0.55 eV found from thermostimulated conductivity is related to excess Cu vacancies. The band gap found from the spectral dependence of the photovoltaic effect is 2.0 eV. The composition of ITO films was studied by Auger analysis and can be described as a variable composition mixture of SnO/sub 2+x/ and In/sub 2/O/sub 3+y/. To produce an Ohmic electrode, gold was evaporated on the top of the Cu/sub 2/O film and hence the resulting structure of the photocell could be specified as ITO--Cu/sub 2/O--Au, for which we propose a barrier band diagram. We studied the photovoltaic characteristics of the fabricated photocells under an incandescent lamp with approx. =100 mW/cm/sup 2/ output. The open-circuit voltage and short-circuit current of our cells were about 20--90 mV and 50 ..mu..A/cm/sup 2/, respectively, and some dependence of the output characteristics on the composition of ITO film was observed. Conversion efficiency for thin films Cu/sub 2/O/ITO cells was found to be substantially lower than for Cu/sub 2/O/Cu Schottky barrier cells. This is tentatively attributed to small diffusion lengths and/or presence of interface recombination centers.

Research Organization:
Department of Electronics, Tokyo Denki University, Chiyoda-Ku, Tokyo 101, Japan
OSTI ID:
6107492
Journal Information:
J. Appl. Phys.; (United States), Vol. 54:6
Country of Publication:
United States
Language:
English

Similar Records

Deposition of aluminum-doped zinc oxide thin films for optical applications using rf and dc magnetron sputter deposition
Journal Article · Thu Jul 15 00:00:00 EDT 2010 · Journal of Vacuum Science and Technology. A, International Journal Devoted to Vacuum, Surfaces, and Films · OSTI ID:6107492

Structure and interface chemistry of MoO{sub 3} back contacts in Cu(In,Ga)Se{sub 2} thin film solar cells
Journal Article · Tue Jan 21 00:00:00 EST 2014 · Journal of Applied Physics · OSTI ID:6107492

Reactive magnetron sputtering of Cu{sub 2}O: Dependence on oxygen pressure and interface formation with indium tin oxide
Journal Article · Wed Jun 01 00:00:00 EDT 2011 · Journal of Applied Physics · OSTI ID:6107492