skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fusion Techniques for the Oxidation of Refractory Actinide Oxides

Technical Report ·
DOI:https://doi.org/10.2172/6031· OSTI ID:6031

Small-scale experiments were performed to demonstrate the feasibility of fusing refractory actinide oxides with a series of materials commonly used to decompose minerals, glasses, and other refractories as a pretreatment to dissolution and subsequent recovery operations. In these experiments, 1-2 g of plutonium or neptunium oxide (PuO2 or NpO2) were calcined at 900 degrees Celsius, mixed and heated with the fusing reagent(s), and dissolved. For refractory PuO2, the most effective material tested was a lithium carbonate (Li2CO3)/sodium tetraborate (Na2B4O7) mixture which aided in the recovery of 90 percent of the plutonium. The fused product was identified as a lithium plutonate (Li3PuO4) by x-ray diffraction. The use of a Li2CO3/Na2B4O7 mixture to solubilize high-fired NpO2 was not as effective as demonstrated for refractory PuO2. In a small-scale experiment, 25 percent of the NpO2 was oxidized to a neptunium (VI) species that dissolved in nitric acid. The remaining neptunium was then easily recovered from the residue by fusing with sodium peroxide (Na2O2). Approximately 70 percent of the neptunium dissolved in water to yield a basic solution of neptunium (VII). The remainder was recovered as a neptunium (VI) solution by dissolving the residue in 8M nitric acid. In subsequent experiments with Na2O2, the ratio of neptunium (VII) to (VI) was shown to be a function of the fusion temperature, with higher temperatures (greater than approximately 400 degrees C) favoring the formation of neptunium (VII). The fusion of an actual plutonium-containing residue with Na2O2 and subsequent dissolution was performed to demonstrate the feasibility of a pretreatment process on a larger scale. Sodium peroxide was chosen due to the potential of achieving higher actinide recoveries from refractory materials. In this experiment, nominally 10 g of a graphite-containing residue generated during plutonium casting operations was initially calcined to remove the graphite. Removal of combustible material prior to a large-scale fusion with Na2O2 is needed due to the large amount of heat liberated during oxidation. Two successive fusions using the residue from the calcination and the residue generated from the initial dissolution allowed recovery of 98 percent of the plutonium. The fusion of the residue following the first dissolution was performed at a higher temperature (600 degrees Celsius versus 450 degrees Celsius during the first fusion). The ability to recover most of the remaining plutonium from the residue suggest the oxidation efficiency of the Na2O2 fusion improves with higher temperatures similar to results observed with NpO2 fusion.

Research Organization:
Savannah River Site (SRS), Aiken, SC (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC09-96SR18500
OSTI ID:
6031
Report Number(s):
WSRC-TR-99-00021; ON: DE00006031
Country of Publication:
United States
Language:
English

Similar Records

Fusion Techniques for the Oxidation of Refractory Actinide Oxides
Technical Report · Thu Apr 15 00:00:00 EDT 1999 · OSTI ID:6031

Decontamination of HEPA filters
Conference · Sun Jan 01 00:00:00 EST 1978 · OSTI ID:6031

Annual Progress Report for the Period July 1961 Through June 1962
Technical Report · Sat Dec 01 00:00:00 EST 1962 · OSTI ID:6031