skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Morphological structure and properties relationship for rubber modified polypropylene-g-polystyrene copolymer blends

Conference ·
OSTI ID:603028
 [1];  [2];  [3]
  1. Montell Polyolefins Research and Development Center, Elkton, MD (United States)
  2. Loughborough Univ. of Technology (United Kingdom)
  3. Stevens Institute of Technology, Hoboken, NJ (United States)

As produced reactor copolymer, obtained by in-reactor grafting polymerization technology is a two-phase rigid copolymer which combines the best attributes of semi-crystalline polypropylene and those of amorphous polystyrene. In the process, the compatibilizer, PP-g-PS and the non-olefinic polymer component, PS are simultaneously generated from the monomer styrene. The reactor product, which has higher modulus but lower impact-resistance is further toughened by incorporation of EPR (ethylene propylene rubber) and SEBS (styrene-ethylene-butylene-styrene) triblock copolymer, via intensive melt-mixing downstream extruder operation. A similarly produced graft copolymer, PP-g-LLDPE has been shown to be an effective compatibilizer for recycled polyolefinic streams. Hence, the motivation to assess the efficacy of the PP-g-PS copolymer as a compatibilizer for commingled polyolefinic and polystyrene recycled streams. Therefore, we have formulated both {open_quotes}physical{close_quotes} analogues and {open_quotes}model{close_quotes} blends of the reactor product, aiming to determine the influence on blend properties, of the critical components, such as the free polystyrene (PS), the grafted polystyrene (g-PS) or chemical compatibilizer, SEBS or physical compatibilizer and the EPR rubber modifier. In mixing experiments off-line, hot stage microscopy on polymer carcass samples was used to monitor morphology evolution and dispersion rate. Using fracture mechanics approach, material properties such as critical stress intensity factor, Kc and critical strain energy release rate, Gc were determined to elucidate the rubber toughening process for the polyblend. Characterization techniques such as DMA (Dynamic Mechanical Analysis), SEM (Scanning Electron Microscopy), TEM (Transmission Electron Microscopy) and DSC (Differential Scanning Calorimetry) were used to examine samples before and after annealing.

OSTI ID:
603028
Report Number(s):
CONF-961108-; TRN: 98:001968-0112
Resource Relation:
Conference: Annual meeting of the American Institute of Chemical Engineers (AIChE), Chicago, IL (United States), 10-15 Nov 1996; Other Information: PBD: 1996; Related Information: Is Part Of 1996 First joint topical conference on processing, structure and properties of polymeric materials; PB: 594 p.
Country of Publication:
United States
Language:
English