skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Toxic substances from coal combustion--forms of occurrence analyses

Technical Report ·
OSTI ID:600691

The objective of this project was to provide analytical support for the Physical Sciences, Inc. (PSI) projects being performed under DOE Contract No. DE-AC22-95101 entitled `Toxic Substances from Coal Combustion - A Comprehensive Assessment`. The Pittsburgh, Elkhorn/Hazard, and Illinois No. 6 program coals were examined to determine the mode of occurrence of selected trace elements (As, Se, Cr, Hg, and Ni) using selective leaching, scanning electron microscopy, electron microprobe analysis, and X-ray diffraction techniques. Preliminary work was also completed for the Wyodak coal. Among other findings, our results indicate that the bulk of the arsenic in the Pittsburgh and Illinois No. 6 coals is in pyrite. High percentages (60-80%) of arsenic were leached by nitric acid, and microprobe data confirm the presence of arsenic in pyrite in each of these coals (concentrations ranging from <0.01 to 0.09 wt.% of the pyrite grains). In the Elkhorn/Hazard coal, arsenic may have several modes of occurrences. About 30 percent of the arsenic in the Elkhorn/Hazard coal was leached by hydrochloric acid, possibly indicating the presence of arsenates that were formed by the oxidation of pyrite. About 25 percent of the arsenic in the Elkhorn/Hazard coal was leached by nitric acid, suggesting an association with pyrite. Only sixty percent of the total arsenic in the Elkhorn/Hazard coal was leached. The low percentage of leachable arsenic may be accounted for by unleached pyrite grains, which were detected in solid residues from the nitric acid leach. In the Pittsburgh, Elkhorn/Hazard, and Illinois No. 6 coals, 20 to 25 percent of the chromium was leached by hydrofluoric acid, indicating some association with silicates (possibly illite). Microprobe analysis of these coals confirmed the presence of chromium in illite and possibly in other clays, at concentrations that were near the detection limits. Results related to the forms of occurrences of the other trace elements (Se, Hg, and Ni) were varied; further work in Phase II is planned to determine their mode of occurrence.

Research Organization:
Geological Survey, Reston, VA (United States)
Sponsoring Organization:
USDOE Assistant Secretary for Fossil Energy, Washington, DC (United States)
DOE Contract Number:
AI22-95PC95145
OSTI ID:
600691
Report Number(s):
DOE/PC/95145-T5; ON: DE97054294
Resource Relation:
Other Information: PBD: Apr 1997
Country of Publication:
United States
Language:
English