skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Low-frequency synoptic-eddy activity in the pacific storm track

Journal Article · · Journal of the Atmospheric Sciences; (United States)
;  [1]
  1. NASA/Goddard Space Flight Center, Greenbelt, MD (United States)

The nature of low-frequency variations in synoptic-eddy activity over the North Pacific is examined in a general circulation model (GCM). A comparison with observations reveals that the GCM produces realistic time mean and low-frequency synoptic-eddy forcing of the 200-mb zonal wind. In the time mean, this forcing, which is computed as the divergence of the extended Eliassen-Palm (E-P) flux, shows an east-west dipole structure that tends to reduce the zonal wind over the western North Pacific and tends to enhance it to the east. This structure is consistent with the general picture of the life cycle of baroclinic waves, which show strong upward and eastward propagation in the western and central Pacific and meridional propagation to the east. The western and central Pacific synoptic-eddy forcing is dominated by the convergence of the baroclinic component of the E-P flux divergence, while over the eastern Pacific the divergence of the barotropic component is important. The dominant component of the low-frequency [open quotes]envelope[close quotes] (periods > 10 days) of synoptic-eddy forcing, computed as the first empirical orthogonal function (EOF) modulates the time mean synoptic-eddy forcing. This modulation is associated with low-frequency changes in the intensity of the synoptic-eddy activity and is only weakly tied to fluctuations in the low-frequency flow. Composites of the hemispheric distribution of synoptic-eddy forcing in the GCM, based on the extremes of the dominant Pacific EOF, show a seesaw behavior with enhanced eddy forcing in the North Pacific basin associated with suppressed forcing in the North Atlantic basin, and vice versa. The link between the Pacific and the Atlantic basins appears to be due to the presence of eastward-traveling baroclinic wave packets that travel around the globe with a period of about 10 days. Some evidence is found for a similar behavior in the observations. 28 refs., 12 figs.

OSTI ID:
5899969
Journal Information:
Journal of the Atmospheric Sciences; (United States), Vol. 50:12; ISSN 0022-4928
Country of Publication:
United States
Language:
English

Similar Records

Annual cycle of equatorial East-West circulation over the Indian and Pacific oceans
Journal Article · Sat May 01 00:00:00 EDT 1993 · Journal of Climate; (United States) · OSTI ID:5899969

Dynamic forcing of the slow transients by synoptic-scale eddies: An observational study
Journal Article · Mon Mar 01 00:00:00 EST 1993 · Journal of the Atmospheric Sciences; (United States) · OSTI ID:5899969

GCM simulations of intraseasonal variability in the pacific/north american region. [GCM (general circulation model)]
Journal Article · Thu Jul 01 00:00:00 EDT 1993 · Journal of the Atmospheric Sciences; (United States) · OSTI ID:5899969