skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High performance inboard shield design for the compact TIBER-II test reactor: Appendix A-2

Conference ·
OSTI ID:5867810

The compactness of the TIBER-II reactor has placed a premium on the design of a high performance inboard shield to protect the inner legs of the toroidal field (TF) coils. The available space for shield is constrained to 48 cm and the use of tungsten is mandatory to protect the magnet against the 1.53 MW/m/sup 2/ neutron wall loading. The primary requirement for the shield is to limit the fast neutron fluence to 10/sup 19/ n/cm/sup 2/. In an optimization study, the performance of various candidate materials for protecting the magnet was examined. The optimum shield consists of a 40 cm thick W layer, followed by an 8 cm thick H/sub 2/O/LiNO/sub 3/ layer. The mechanical design of the shield calls for tungsten blocks within SS stiffened panels. All the coolant channels are vertical with more of them in the front where there is a high heat load. The coolant pressure is 0.2 MPa and the maximum structural surface temperature is <95/sup 0/C. The effects of the detailed mechanical design of the shield and the assembly gaps between the shield sectors on the damage in the magnet were analyzed and peaking factors of approx.2 were found at the hot spots. 2 refs., 6 figs., 2 tabs.

Research Organization:
Wisconsin Univ., Madison (USA). Fusion Technology Inst.
DOE Contract Number:
FG02-87ER52140
OSTI ID:
5867810
Report Number(s):
CONF-871007-50; ON: DE88002460
Resource Relation:
Conference: 12. symposium on fusion engineering, Monterey, CA, USA, 12 Oct 1987; Other Information: Paper copy only, copy does not permit microfiche production
Country of Publication:
United States
Language:
English