skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enzymatic redox chemistry: A proposed reaction pathway for the six-electron reduction of SO sub 3 sup 2 minus to S sup 2 minus by the assimilatory-type sulfite reductase from Desulfovibrio vulgaris (Hildenborough)

Journal Article · · Biochemistry; (United States)
DOI:https://doi.org/10.1021/bi00100a027· OSTI ID:5822859
;  [1]
  1. Ohio State Univ., Columbus (United States)

A detailed reaction pathway for the six-electron reduction of SO{sub 3}{sup 2{minus}} to S{sup 2{minus}} by the assimilatory-type sulfite reductase (SiR) from Desulfovibrio vulgaris (Hildenborough) has been deduced from experiments with {sup 35}S-labeled enzyme and the relative reaction rates of nitrogenous substrates. The ligand bridging the prosthetic (Fe{sub 4}S{sub 4})-siroheme center is apparently exchanged by {sup 35}S{sup 2{minus}} in both oxidized and reduced enzyme. This {sup 35}S{sup 2{minus}} label was retained in the course of SO{sub 3}{sup 2{minus}} reduction, implicating substrate binding to the nonbridging axial site of the siroheme. A reaction mechanism is proposed in which SO{sub 3}{sup 2{minus}} binds to Fe{sup 2+} through the sulfur atom, followed by a series of two-electron reductive cleavages of S-O bonds. Protonation of oxygen facilitates bond cleavage, giving hydroxide as leaving group. The bridge remains intact throughout the course of the reaction, providing an efficient coupling pathway for electron transfer between the cluster and siroheme.

OSTI ID:
5822859
Journal Information:
Biochemistry; (United States), Vol. 30:36; ISSN 0006-2960
Country of Publication:
United States
Language:
English