skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of cadmium on intercellular junctions in a renal epithelial cell line grown on permeable membrane supports

Conference · · FASEB Journal (Federation of American Societies for Experimental Biology); (United States)
OSTI ID:5695771
;  [1]
  1. Philadelphia Coll. of Osteopathic Medicine, PA (United States)

Recent findings from the authors laboratories have shown that Cd{sup 2+} has relatively specific damaging effects on adhering and occluding junctions in the established porcine renal epithelial cell line, LLC-PK{sub 1}. The present studies were undertaken in order to further characterize the junction-perturbing effects of Cd{sup 2+} in polarized monolayers of LLC-PK{sub 1} cells, and to begin to identify the mechanisms underlying these effects. LLC-PK{sub 1} cells were grown to confluency on Millicell HA chambers and exposed to Cd{sup 2+} in polarized monolayers of LLC-PK{sub 1} cells, and to begin to identify the mechanisms underlying these effects. LLC-PK{sub 1} cells were grown to confluency on Millicell HA chambers an exposed to Cd{sup 2+} by adding CdCl{sub 2} to the solutions on either side of the cell monolayer. The integrity of cell-cell junctions was assessed by monitoring the transepithelial electrical resistance. The results showed that exposure to Cd{sup 2+} caused a pronounced decrease in transepithelial resistance without causing the cells to detach from the Millicell membrane. This decrease in resistance occurred more quickly and was much more pronounced when Cd{sup 2+} was added to the basolateral surface rather than the apical surface. Furthermore, the effects of Cd{sup 2+} were greatly reduced when excess Ca{sup 2+} was present in the medium. These results suggest that Cd{sup 2+} was present in the medium. These results suggest that Cd{sup 2+} may disrupt cell-cell junctions by interacting with Ca{sup 2+} binding sites or Ca{sup 2+} channels that are oriented toward the basolateral cell surface.

OSTI ID:
5695771
Report Number(s):
CONF-9104107-; CODEN: FAJOE
Journal Information:
FASEB Journal (Federation of American Societies for Experimental Biology); (United States), Vol. 5:4; Conference: 75. annual meeting of the Federation of American Societies for Experimental Biology (FASEB), Atlanta, GA (United States), 21-25 Apr 1991; ISSN 0892-6638
Country of Publication:
United States
Language:
English