skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: WESF cesium capsule behavior at high temperature or during thermal cycling

Technical Report ·
DOI:https://doi.org/10.2172/5575248· OSTI ID:5575248

Double-walled stainless steel (SS) capsules prepared for storage of radioactive /sup 137/Cs from defense waste are now being considered for use as sources for commercial irradiation. Cesium was recovered at B-plant from the high-level radioactive waste generated during processing of defense nuclear fuel. It was then purified, converted to the chloride form, and encapsulated at the Hanford Waste Encapsulation and Storage Facility (WESF). The molten cesium chloride salt was encapsulated by pouring it into the inner of two concentric SS cylinders. Each cylinder was fitted with a SS end cap that was welded in place by inert gas-tungsten arc welding. The capsule configuration and dimensions are shown in Figure 1. In a recent review of the safety of these capsules, Tingey, Wheelwright, and Lytle (1984) indicated that experimental studies were continuing to produce long-term corrosion data, to reaffirm capsule integrity during a 90-min fire where capsule temperatures reached 800/sup 0/C, to monitor mechanical properties as a function of time, and to assess the effects of thermal cycling due to periodic transfer of the capsules from a water storage pool to the air environment of an irradiator facility. This report covers results from tests that simulated the effects of the 90-min fire and from thermal cycling actual WESF cesium capsules for 3845 cycles over a period of six months. 11 refs., 39 figs., 9 tabs.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
DOE Contract Number:
AC06-76RL01830
OSTI ID:
5575248
Report Number(s):
PNL-5517; ON: DE85014894
Country of Publication:
United States
Language:
English

Similar Records