skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Inhibition of cellular DNA synthesis by vesicular stomatitis virus

Journal Article · · J. Virol.; (United States)
OSTI ID:5311281

DNA synthesis in mouse myeloma (MPC-11) cells and L cells was rapidly and progressively inhibited by infection with vesicular stomatitis virus (VSV). No significant difference in cellular DNA synthesis inhibition was noted between synchronized and unsynchronized cells, nor did synchronized cells vary in their susceptibility to VSV infection after release from successive thymidine and hydroxyurea blocks. Cellular RNA synthesis was inhibited to about the same extent as DNA synthesis, but cellular protein synthesis was less affected by VSV at the same multiplicity of infection. The effect of VSV on cellular DNA synthesis could not be attributed to degradation of existing DNA or to decreased uptake of deoxynucleoside triphosphates, nor were DNA polymerase and thymidine kinase activities significantly different in VSV-infected and uninfected cell extracts. Analysis by alkaline sucrose gradients of DNA in pulse-labeled uninfected and VSV-infected cells indicated that VSV infection did not appear to influence DNA chain elongation. Cellular DNA synthesis was not significantly inhibited by infection with the VSV polymerase mutant tsG114(I) at the restrictive temperature or by infection with defective-interfering VSV DI-011 (5' end of the genome), but DI-HR-LT (3' end of genome) exhibited initially rapid but not prolonged inhibition of MPC-11 cell DNA synthesis. DNA synthesis inhibitory activity of wild-type VSV was only slowly and partially inactivated by very large doses of UV irradiation. These data suggest that, as in the effect of VSV on cellular RNA synthesis inhibition of cellular DNA synthesis by VSV requires transcription of a small segment of the viral genome.

OSTI ID:
5311281
Journal Information:
J. Virol.; (United States), Vol. 38:1
Country of Publication:
United States
Language:
English