skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Oxide-supported metal carbonyls: novel catalysts for the liquefaction of coal. Final technical report

Technical Report ·
OSTI ID:5255018

Coal liquefaction, hydrodesulfurization (HDS), and hydrodenitrogenation (HDN) catalysts have been investigated increasingly in recent years because of the need to understand how to develop more selective and stable materials for coal utilization. One catalyst that has been used extensively for HDS and subjected to numerous characterization and model reaction studies is Co-Mo/Al/sub 2/O/sub 3/. In these studies, the catalyst preparation technique has usually involved the incipient-wetness impregnation of ..gamma..-Al/sub 2/O/sub 3/ with ammonium molybdates and cobalt nitrates. Such a technique leads to a variety of surface species, bulk-like and monolayer forms, which have been described and can be controlled by alterations in the preparation techniques and materials. However, certain structural and chemical factors of the catalysts, e.g., Co and Mo reducibility and dispersion or surface speciation at low and high metal concentrations, seem to be independent of such alterations. To investigate whether these factors can be affected by preparation techniques and to develop oxide-supported, metal catalysts having controlled metal dispersions and speciation, a catalyst preparation technique using metal carbonyls with an extraction process to metal-load oxide supports has been developed (J.E. Crawford, G.A. Melson, L.E. Makovsky, F.R. Brown, J. Catal., 83: 454 (1983)). This report discusses the surface and bulk characterization, and presents initial HDS and liquefaction results, for these catalysts. 7 refs., 4 figs., 1 tab.

Research Organization:
Virginia Commonwealth Univ., Richmond (USA). Dept. of Chemistry
DOE Contract Number:
AC22-82PC53101
OSTI ID:
5255018
Report Number(s):
DOE/PC/53101-T2; ON: DE85017995
Country of Publication:
United States
Language:
English